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Abstract—Let Λ = {zn,k : 1 ≤ k ≤ n, n ∈ N} be a
triangular array of distinct complex numbers and let f be
an entire function. Suppose Ln−1f is the unique polynomial
of degree at most n − 1 which interpolates f at zn,k for
k ∈ {1, · · · , n}, i.e., Lnf(zn,k) = f(zn,k). In this note,
we show that Lnf converges to f uniformly on compact
subsets of the complex plane provided Λ is bounded. We
next consider the case when zn,k = zk where {|zk|}k∈N is a
slowly increasing unbounded sequence in the sense that for
some α ∈]0, 1[, (k− 1)α ≤ |zk| ≤ kα for each k ∈ N. If f is
bandlimited, we prove as well that Lnf converges uniformly
(and rapidly) to f on compact subsets of the complex plane.
The rate of convergence that we obtain is optimal to some
extent.
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I. INTRODUCTION

Fix Ω > 0 and let PW (Ω) denote the Paley-Wiener

class, that is, the set of functions f ∈ L2(R) whose Fourier

transform

f̂(ω) =
1√
2π

∫
R
f(t)e−iωt dt

is supported on [−Ω,Ω]. Suppose 0 < δΩ < π and

φ is a function from the Schwartz class with φ̂ sup-

ported on [−πδ−1, πδ−1] and such that φ̂ = (2π)−1/2

on [−Ω,Ω]. Then any f in PW (Ω) can be recovered

from its values {f(kδ) : k ∈ Z} by the formula

f(x) = δ
∑
k∈Z f(kδ)φ(x− kδ) [?].

More generally, let {xk}∞k=−∞ be a bi-infinite increas-

ing sequence in R, such that limk→±∞ xk = ±∞ and

∆ = supk∈Z(xk − xk−1) < ∞. If f ∈ PW (Ω) with

∆Ω < π, it is well known that we may recover f from

the samples {f(xk)}∞k=−∞. In fact, in [?] and [?], the

authors provide algorithms for signal reconstruction.

We pose the following question: if {tk}∞k=1 is a se-

quence in ]0,+∞[ slowly increasing to infinity, is it

possible to recover f ∈ PW (Ω) from its samples

{f(tk)}∞k=1? In this note, we prove that if for some

α ∈]0, 1[, (k−1)α ≤ |zk| ≤ kα for all k ∈ N, then the

Lagrange polynomials Ln−1f interpolating f at the points

z1, · · · , zn converge uniformly to f on compact subsets of

the complex plane. The rate of convergence that we obtain

is optimal to some extent.

This result answers a special case of a more general

problem. Let {zk}∞k=1 be a sequence of complex numbers

satisfying

lim
r→+∞

r−1|{k ∈ N : |zk| ≤ r}| = +∞. (I.1)

Then, any f in PW (Ω) is completely determined by

its samples {f(zk)}∞k=1 (Proposition ?? below). Thus,

an interesting task is to reconstruct f from {f(zk)}∞k=1.

When {zk}+∞k=1 is bounded, (??) is satisfied and we show

in Theorem ?? that Lagrange interpolation accomplishes

the reconstruction. Moreover, if (k − 1)α ≤ |zk| ≤ kα

with 0 < α < 1, the condition in (??) is also satisfied and

we also show that Lagrange interpolation does the job in

Theorem ??.

One of the most beautiful results on Lagrange interpo-

lation goes back to the 1930’s by J.L. Walsh. Suppose f is

analytic on the disk {z ∈ C : |z| < ρ} for some ρ > 1. For

a positive integer n, let Ln−1f be the unique polynomial

of degree at most n− 1 which interpolates f at the zeros

of zn − 1. Walsh proved that

lim
n→∞

(
Ln−1f(z)−

n−1∑
k=0

f (k)(0)

k!
zk

)
= 0

uniformly for |z| ≤ r whenever 0 < r < ρ2. This

work is also inspired by results of Totik in [?] on the

recovery of Hp functions on the open unit disk D =



{z ∈ C : |z| < 1}. Given a sequence {zn}∞n=1 in D

with
∑∞
n=1(1−|zn|) = +∞, there exist polynomials pn,j

such that
∑n
j=1 f(zj)pn,j converges to f , for any f ∈ Hp.

We refer the reader to the book [?] for an excellent

survey on complex interpolating polynomials. Other im-

portant results on interpolation may be found in the papers

[?] and [?] of Szabados, Varga, et al.

II. A CONSEQUENCE OF JENSEN’S FORMULA

For an entire function f and r > 0, we define nf (r) to

be the number of zeros of f (counting multiplicities) in

the disk {z ∈ C : |z| ≤ r} and

Mf (r) = sup{|f(z)| : |z| = r}.

Proposition II.1 Let Ω > 0 and f ∈ PW (Ω). Suppose

{zk}k∈N are the zeros of f listed with their multiplicities

and are arranged so that |z1| ≤ |z2| ≤ · · · . Suppose

lim
r→+∞

nf (r)

r
= +∞.

Then f ≡ 0.

Proof. Suppose f 6≡ 0. Note that since f is in PW (Ω), it

is entire. Let N ∈ {0, 1, 2, . . .} be the order of the zero of

f at zero. Then there exists an entire function g such that

g(0) 6= 0 and f(z) = zNg(z) for all z ∈ C. Therefore, a

consequence [?, p. 332] of Jensen’s formula is that

ng(r) log 2 ≤ logMg(2r) for each r > 0. (II.1)

Meanwhile for ρ > 0, we have ng(ρ) = nf (ρ)−N and

Mg(ρ) = ρ−NMf (ρ). Moreover, the inversion formula

f(z) =
1√
2π

∫ Ω

−Ω

f̂(ζ)eiζz dζ ∀z ∈ C,

implies that Mf (ρ) ≤ (2π)−1/2‖f̂‖1eΩρ for all ρ > 0.

Therefore in view of (??), we obtain

(nf (r)−N) log 2 ≤ −N log 2r + log
‖f̂‖1√

2π
+ 2rΩ

for r > 0. Since limr→∞ nf (r)r−1 = +∞, we have

‖f̂‖1 = +∞, which is absurd. Thus f ≡ 0.

Remark II.2 This proposition implies that if {zk}∞k=1 is

a sequence of complex numbers such that

lim
r→+∞

r−1|{k ∈ N : |zk| ≤ r}| = +∞, (II.2)

then for any Ω > 0, any f in PW (Ω) is completely

determined by the sampling {f(zk)}∞k=1.

For instance, if {zk}∞k=1 is a bounded sequence, then

(??) is satisfied. Also, if (k− 1)α ≤ |zk| ≤ kα (∀k ∈ N),

for some α ∈]0, 1[, then (??) is also satisfied. For these

two cases, we will show that the Lagrange interpolation

of bandlimited functions converges uniformly on compact

subsets of C.

III. IDENTITIES INVOLVING LAGRANGE

INTERPOLATION

We fix a triangular array

{zn,k : k ∈ {1, · · · , n}, n ∈ N}

of complex numbers such that zn,1, . . . , zn,n are distinct

for every n ∈ N. Fix n ∈ N. For k ∈ {1, 2, · · · , n} we

define

`n−1,k(z) =

 n∏
j=1
j 6=k

(zn,k − zn,j)


−1

n∏
j=1
j 6=k

(z − zn,j),

which are polynomials of degree at most n− 1 such that

`n−1,k(zn,k) = 1 and `n−1,k(zn,j) = 0 if j 6= k. For a

function f defined at the points zn,1, · · · , zn,n, we define

Ln−1f(z) =

n∑
k=1

f(zn,k)`n−1,k(z). (III.1)

Then Ln−1f(zn,k) = f(zn,k) for 1 ≤ k ≤ n. Ln−1f is

called the Lagrange polynomial of degree at most n − 1

which interpolates f at the n points zn,1, . . . , zn,n.

Our results make use of the following classical formula.

Lemma III.1 Fix n ∈ N and R > 0. Suppose

z, zn,1, zn,2, · · · , zn,n are distinct complex numbers con-

tained in the ball B(0, R) = {ζ ∈ C : |ζ| < R} and h is

analytic in B(0, R′) for some R′ > R. Then

Ln−1h(z) = h(z) +
1

2πi

∫
|ζ|=R

h(ζ)pn(z)

(z − ζ)pn(ζ)
dζ

where pn(·) =
∏n
k=1( · − zn,k).

IV. LAGRANGE INTERPOLATION ON A BOUNDED SET

OF NODES OF ENTIRE FUNCTIONS

The following is one of the main results of this paper.

Theorem IV.1 Let Λ = {zn,k : k ∈ {1, . . . , n}, n ∈ N}
be a bounded array of complex numbers such that

zn,1, . . . , zn,n are distinct for each n ∈ N. Set



σ = supz∈Λ |z|. Let f be entire. Then for each

ρ > 0,

lim
n→∞

sup
|z|≤ρ

|Ln−1f(z)− f(z)|1/n = 0.

Consequently, {Lnf}∞n=1 converges uniformly to f on

each compact subset of the complex plane.

Proof. Suppose f(ω) =
∑∞
j=0 ajω

j for all ω ∈ C. Let

ρ > σ and ε > 0. Choose δ > 0 such that

2δρ(ρ+ σ)

2ρ− σ
< ε and 4δρ < 1. (IV.1)

Since f is entire, there exists N ∈ N such that |an| < δn

whenever n ≥ N.

Now, fix n ≥ N and |z| ≤ ρ. We write

Ln−1f(z) − f(z) = R
(1)
n−1(z) +R

(2)
n−1(z) where

R
(1)
n−1(z) =

n∑
k=1

`n−1,k(z)
n−1∑
j=0

ajz
j
n,k −

n−1∑
j=0

ajz
j

=

n−1∑
j=0

aj

(
n∑
k=1

`n−1,k(z)zjn,k − z
j

)
. (IV.2)

Since each inner sum in (??) is a polynomial of degree

at most n − 1 that vanishes at the n distinct points

zn,1, . . . , zn,n, it is identically zero. Thus,

Ln−1f(z)− f(z) = R
(2)
n−1(z)

=

∞∑
j=n

aj

(
n∑
k=1

`n−1,k(z)zjn,k − z
j

)
.

We then apply Lemma ?? with h(ζ) = ζj and R = 2ρ

for each j ≥ n. As a result, we get

Ln−1f(z)− f(z) =
1

2πi

∞∑
j=n

aj

∫
|ζ|=2ρ

ζjpn(z)

(z − ζ)pn(ζ)
dζ,

(IV.3)

with pn(·) =
∏n
k=1(· − zn,k). Meanwhile∣∣∣∣pn(z)

pn(ζ)

∣∣∣∣ ≤ ( ρ+ σ

2ρ− σ

)n
for |ζ| = 2ρ. Hence

|Ln−1f(z)− f(z)| ≤ 2

(
ρ+ σ

2ρ− σ

)n ∞∑
j=n

(2ρδ)j

≤ 2

(
ρ+ σ

2ρ− σ

)n
(2ρδ)n

1− 2ρδ
.

Finally, combining this with (??), we obtain

|Ln−1f(z)− f(z)| ≤ 4εn.

V. LAGRANGE INTERPOLATION OF BANDLIMITED

FUNCTIONS ON SLOWLY INCREASING NODES

Another of our main results is the following theorem.

Theorem V.1 Let Ω > 0, α ∈]0, 1[, and suppose {zk}∞k=1

is a sequence of distinct complex numbers such that

(k − 1)α ≤ |zk| ≤ kα ∀k ∈ N. (V.1)

Let g ∈ L1([−Ω,Ω]) and define an entire function f by

f(z) =

∫ Ω

−Ω

g(t)eitzdt ∀z ∈ C.

Then for each ρ > 1, there exists N0 ∈ N such that for

all n ≥ N0,

sup
|z|≤ρ

|Ln−1f(z)− f(z)| ≤ C‖g‖1Q(ρ)An(n+ 1)−pn ,

(V.2)

where

Q(ρ) = ρ−1/2 exp(αρ1/α), pn = n(1− α) + 1− α

2
,

(V.3)

and A and C are constants depending only on α and Ω:

A = 2α−1Ω exp(2 + Ω− α) and C = π−12α/2e2+Ω.

Proof. Let f(ζ) =
∑∞
j=0 ajζ

j for each ζ ∈ C. Let ρ > 1

and let N be the integer satisfying (N − 1)α < ρ ≤ Nα.

(Necessarily, N ≥ 2.) Now, fix n ≥ 21/αN and |z| ≤ ρ.

Applying Lemma ?? with R = (n+ 1)α, we obtain as in

the proof of (??),

Ln−1f(z)−f(z) =
1

2πi

∞∑
j=n

aj

∫
|ζ|=(n+1)α

ζjpn(z)

(z − ζ)pn(ζ)
dζ

(V.4)

where pn(·) =
∏n
k=1(· − zk).

Meanwhile, for |ζ| = (n+ 1)α, we have

|pn(ζ)| ≥ (n+ 1)nα
n∏
k=1

(
1−

(
k

n+ 1

)α)
.

Applying the inequality 1 − tα ≥ α(1 − t), 0 < t < 1,

with t = k
n+1 (1 ≤ k ≤ n), we obtain

|pn(ζ)| ≥ αnn!

(n+ 1)n(1−α)
for |ζ| = (n+ 1)α. (V.5)

Next, we turn to |pn(z)|. Since |z| < ρ and 0 < α < 1,

our choice of N ( (N − 1)α < ρ ) and (??) imply, on one

hand that
N−1∏
k=1

|z − zk| ≤ (2ρ)N−1. (V.6)

On the other hand, since ρ ≤ Nα, we obtain
n∏

k=N

|z − zk| ≤
n∏

k=N

(2kα) =
2n−N+1(n!)α

((N − 1)!)α
. (V.7)



Combining (??) and (??) gives

|pn(z)| ≤ 2nρN−1(n!)α

((N − 1)!)α
. (V.8)

Thus, we conclude from (??) and (??) that∣∣∣∣pn(z)

pn(ζ)

∣∣∣∣ ≤ θnQ1(ρ) (V.9)

whenever |ζ| = (n+ 1)α, where

θn =

(
2

α

)n(
(n+ 1)n

n!

)1−α

and Q1(ρ) =
ρN−1

((N − 1)!)α
.

(V.10)

Meanwhile by Stirling’s formula [?, p.204],

n! ≥
√

2πe−n−1(n+ 1)n+ 1
2 for n ∈ N. (V.11)

This provides the following estimate for θn:

θn ≤
(

2

α

)n(
en+1√

2π(n+ 1)

)1−α

. (V.12)

Since ρ > 1, then in view of (??) and the conditions

(N − 1)α < ρ ≤ Nα, we obtain the following estimates

for Q1(ρ):

Q1(ρ) ≤
(

1 + ρ1/α

2π

)α/2
exp(α+ αρ1/α)

ρ

≤
(

e√
π

)α
exp(αρ1/α)

ρ1/2
. (V.13)

Meanwhile, if |ζ| = (n+ 1)α, then

|ζ − z| ≥ (n+ 1)α − ρ ≥ 1

2
(n+ 1)α.

Substituting this, (??), and the estimates

|aj | ≤ (j!)−1‖g‖1Ωj (∀j ∈ N) into (??), we get

|Ln−1f(z)− f(z)| ≤ 2‖g‖1θn Q1(ρ)

∞∑
j=n

(Ω(n+ 1)α)j

j!
.

Applying the estimate
∞∑
j=n

uj

j!
≤ uneu

n!
with u = Ω(n+ 1)α,

(??), (??) and again (??), we finally obtain (??).

The next proposition shows that the estimate (??) is

optimal in relation to the exponent α in (??) and in (??).

Proposition V.2 Let {zk}∞k=1 be a sequence of distinct

nonzero complex numbers such that {|zk|}∞k=1 is increas-

ing, and let f be an entire function. For each n ∈ N,

define Ln−1f as in (??) (with zn,k = zk for each

n ∈ N and for each k ∈ {1, 2, · · · , n}). Let α ∈ ]0, 1[,

{εn}∞n=1 ⊂ ]0,+∞[, and C,C1 be positive constants such

that for each ρ > 0,

sup
|z|≤ρ

|Ln−1f(z)− f(z)| ≤ C exp(αρ1/α)εn (V.14)

and |Ln−1f(0) − f(0)| ≥ C1εn for each n ∈ N. Then

there exists a constant C0 > 0 such that

|zn| ≥ C0n
α, for all n ∈ N.

Proof. Fix n ∈ N and set r = |zn|. Define g =

(Ln−1f(0) − f(0))−1(Ln−1f − f). Applying (??) with

ρ = 2r gives

Mg(2r) ≤
C

C1
exp

(
α(2r)1/α

)
.

Finally, since ng(r) = n, we obtain from (??) that

n log 2 ≤ log
C

C1
+ α(2|zn|)1/α.

This furnishes the desired estimate.
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