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Abstract—Signal reconstruction is one of the most important
problems in signal processing and sampling theorems are one
of the main tools used for such reconstructions. There is a
vast literature on sampling in one and higher dimensions of
bandlimited signals. Because the sampling formulas and points
depend on the geometry of the domain on which the signals are
confined, explicit representations of the reconstruction formulas
exist mainly for domains that are geometrically simple, such as
intervals or parallelepiped symmetric about the origin.

In this talk we derive sampling theorem for the reconstruction
of signals that are bandlimited to a disc centered at the origin.
This will be done for a more general class of signals than those
that are bandlimited in the Fourier transform domain. The
sampling points are related to the zeros of the Bessel function.

Index Terms—Two-dimensional sampling theorem, Signal re-
construction.

I. INTRODUCTION

Sampling theorems are important tools in signal processing
and communication because they allow the conversion of
analog signals into digital signals which can be processed
digitally and then converted back. The fundamental paper in
this field is Shannon’s seminal paper [8] which showed how a
signal bandlimited to, say an interval [−σ, σ], can be sampled
and converted to a digital signal and then converted back to
an analog signal using shifts of the sinc function sinπx/πx.
Since the publication of Shannon’s paper many generalizations
have been developed, such as sampling in higher dimensions,
sampling with the derivatives, and sampling of functions given
by integral transforms other than the Fourier transform.

Sampling theorems may be obtained by using different
techniques, among them are orthogonal sampling systems, Zak
transform, and reproducing-kernel Hilbert space theory. In [1],
[2], Bhandari and Zayed obtained sampling theorems for the
special affine Fourier transform from which sampling theorem
for the linear canonical transform (LCT) may be obtained
as a special case. Other results concerning sampling of LCT
can be found in [6], [9], [10], [11], [12], [13], [7]; see also
[14] for related results. All the above mentioned results deal
with signals that are bandlimited to an interval symmetric
around the origin, or a rectangle centered at the origin in
two dimensions, or a parallelepiped in n dimension. Sampling
theorems for signals that are bandlimited to a general domain
are challenging to obtain in closed form because the sampling
points and functions depend on the geometry of the domain
for which the sinc function is not appropriate.

Since the fractional Fourier transform (FrFT) is a special
case of LCT, sampling theorems for the FrFT are special cases
of those for the LCT.

The purpose of this article is to obtain a reconstruction
formula for signals that are bandlimited to a disc of radius R in
the LCT domain. The generalization of the sampling theorem
to a disc requires different techniques than those used for
intervals and rectangles and the sinc function plays no role in
the derivation. As a special case, we obtain sampling formula
for signals that are bandlimited to a disc in the fractional
Fourier transform domain.

A. The Two-Dimensional LCT

Let t = (t1, · · · , , tn),x = (x1, · · · , , xn), x · t = x1t1 +
· · ·+xntn, and |x|2 = x21+· · ·+x2n. The n-dimensional linear
canonical transform of a function f ∈ L1(Rn) is defined as

F (t) =
1

(2πb)n/2

∫
Rn

f(x)e
i
2b (a|x|2+d|t|2−2x·t)dx,

where dx = dx1 · · · dxn, and a, b, c, d are real numbers such
that ad − bc = 1, b 6= 0. The fractional Fourier transform is
obtained by setting a = cos θ = d, b = sin θ = −c.

In two dimensions the transform can be simplified further:

F (t) =
1

(2πb)

∫
R2

f(x)e
i
2b (a(|x|2+d|t|2−2(x1t1+x2t2))dx1dx2.

Using polar coordinates

x1 = r cos θ, x2 = r sin θ, t1 = ρ cosφ, t2 = ρ sinφ,

we obtain

F (ρ, φ) =
1

(2πb)

∫ ∞
0

∫ 2π

0

f(r, θ)e
i
2b (ar2+dρ2−2rρ cos(θ−φ))rdrdθ.

Hence,

F̃ (ρ, φ) =
1

2πb

∫ ∞
0

∫ 2π

0

f̃(r, θ)e−
i
b rρ cos(θ−φ)rdrdθ,

where

F̃ (ρ, φ) = e−idρ
2/2bF (ρ, φ), and f̃(r, θ) = eiar

2/2bf(r, θ).

In view of the relation [3, p. 973],

e−it sinψ =

∞∑
n=−∞

Jn(t)e−inψ (1)

we obtain

F̃ (ρ, φ) =
1

2πb

∫ ∞
0

∫ 2π

0

f̃(r, θ)

∞∑
n=−∞

(−i)nJn(rρ/b)e−in(θ−φ)rdrdθ,

(2)



where Jν(z) is the Bessel function of the first kind and order
ν ≥ −1/2. Let us denote the positive zeros of Jν(z) by

0 < zν,1 < zν,2 < · · · < zν,n < · · · .

From the relation [5, p. 128]∫ a

0

rJν(αr)Jν(βr)dr =
aβJν(αa)J ′ν(βa)− aαJν(βa)J ′ν(αa)

α2 − β2
,

(3)
we obtain by setting α = αν,n = zν,n/a and β = `/a∫ a

0

Jν (αν,nr) Jν (`r/a) rdr =
a2zν,nJν+1 (zν,n) Jν(`)

z2ν,n − `2
.

(4)
We also have∫ a

0

Jν (αν,nx) Jν (αν,mx)xdx =

{
0, m 6= n
a2

2 J
2
ν+1(zν,n), m = n

(5)

II. THE SAMPLING THEOREM

To derive the main result of the paper, we need the following
lemmas for which an abridged proof will be given.

Lemma 1. Consider Jν(ρx) where 0 ≤ x ≤ a and ρ ≥ 0,
and let ανn, zνn be defined as before. Then

Jν(ρx) =

∞∑
n=1

2zν,nJν(aρ)Jν(αν,nx)(
z2ν,n − a2ρ2

)
Jν+1(zν,n)

.

Proof. By expanding Jν(ρx) in terms of the orthogonal sys-
tem given by Eq. (5), we have

Jν(ρx) =

∞∑
n=1

bn(ρ)Jν(αν,nx),

and by using Eq.( 4), and then solving for bn(ρ), we obtain
the result.

With the aid of Lemma 1 and some easy calculations, one
can derive the following lemma

Lemma 2. Let

F (ρ) =

∫ a

0

f(r)Jν(ρr)rdr.

Then F can be reconstructed from its samples via the formula

F (ρ) =

∞∑
j=1

F (αν,j)
2zν,jJν(aρ)(

z2ν,j − a2ρ2
)
Jν+1(zν,j)

. (6)

Lemma 3. Let f(r, t) be a signal periodic with period T and
highest frequency N/T, that is

f(r, t) =

N∑
n=−N

cn(r)e2πint/T .

Then f can be reconstructed from 2N + 1 samples via

f(r, t) =

N∑
k=−N

f

(
r,

kT

2N + 1

)
σk(t), (7)

where

σk(t) =
sin
[
(2N + 1) πT

(
t− kT

2N+1

)]
(2N + 1) sin

[
π
T (t− kT

2N+1 )
] (8)

Proof. We have

f(r, t) =

N∑
n=−N

cn(r)e2πint/T , (9)

and if we put η = T/(2N + 1), it follows that

N∑
k=−N

f (r, kη) e−2πimk/(2N+1) =

N∑
k,n=−N

cn(r)eikτ . (10)

where τ = 2πl
2N+1 with l = n−m. The second summation on

the right-hand side, i.e, the summation over k can be written
in the form

N∑
k=−N

eikτ =
e−iNτ

(
1− e(2N+1)iτ

)
1− eiτ

=
sinπl

sin(πl/(2N + 1))
= 0, if l 6= 0,

and when l = 0, i.e., n = m, we have τ = 0 and∑N
k=−N e

iτk = 2N + 1. By substituting this result into (10),
we obtain

N∑
k=−N

f (r, kη) e−2πimk/(2N+1) = (2N + 1)cm.

Solving for cn and substituting into Eq. (9), we obtain

f(r, t) =
1

2N + 1

N∑
k=−N

f (r, kη)

N∑
n=−N

einx, (11)

where x = 2π
T

(
t− kT

2N+1

)
. The second summation is easily

seen to be
∑N
n=−N e

inx = sin(N+1/2)x
sin(x/2) . Thus, Eq. (11) takes

the desired form given by (7).

Lemma 4. Let

σk(t) =
sin
[
(2N + 1) πT

(
t− Tk

2N+1

)]
(2N + 1) sin

[
π
T (t− Tk

2N+1 )
] ; −N ≤ k ≤ N.

Then∫ T

0

σk(t)e−i2πnt/T dt =

{
T

2N+1e
−2πikn/(2N+1) −N ≤ n ≤ N

0 otherwise

Proof. Let xk = 2π
T

(
t− kT

2N+1

)
. The result will now follow

from the observation that

σk(t) =
(
e−iNxk + · · ·+ eiNxk

)
/(2N + 1).

Now we are able to sketch the proof of the main theorem
whose full proof will be published somewhere else.



Theorem 1. Let f be bandlimited to a disc centered at the
origin with radius R and with highest frequency N/(2π), that
is

f(r, θ) =

N∑
n=−N

cn(r)einθ, 0 ≤ r ≤ R.

Let F (ρ, φ) be its canonical Fourier transform. Then F can
be reconstructed from its samples according to the following
formula

F̃ (ρ, φ) =

N∑
k,n=−N

ein(φ−kτ)

(2N + 1)b

∞∑
j=1

Φn,j(ρ/b)F̃ (bαn,j , τk),

where F̃ (ρ, φ) = e−idρ
2/2bF (ρ, φ),

Φn,j(ρ/b) =
2zn,jJn(Rρ/b)

(z2n,j −R2ρ2/b2)Jn+1(zn,j)
, (12)

and τ = 2π/(2N + 1).

Proof. The canonical Fourier transform of f(r, θ) is given by

F (ρ, φ) =
1

2πb

∫
R2

f(r, θ)K(r, ρ, θ, φ)rdrdθ,

where K(r, ρ, θ, φ) = exp
[
i
2b

(
ar2 + dρ2 − 2rρ cos(θ − φ

)]
.

By setting

F̃ (ρ, φ) = e−idρ
2/2bF (ρ, φ), and f̃(r, θ) = eiar

2/2bf(r, θ),

and using Eq. (2), we have

F̃ (ρ, φ) =
1

2πb

∫ 2π

0

∫ R

0

f̃(r, θ)

×
∞∑

n=−∞
(−i)nJn(rρ/b)e−i(θ−φ)nrdrdθ

=
1

2πb

∞∑
n=−∞

(−i)neinφ
N∑

m=−N

∫ 2π

0

eiθ(m−n)dθ

×
∫ R

0

cm(r)eiar
2/2bJn(rρ/b)rdr

=
1

b

N∑
n=−N

einφĉn(ρ), (13)

where ĉn(ρ) =

∫ R

0

Cn(r)Jn(rρ/b)rdr

which is the Hankel transform of Cn(r) = (−i)ncn(r)eiar
2/2b

scaled by 1/b. Therefore, from the sampling formula for the
Hankel transform Eq. (6), we have

ĉn(ρ) =

∞∑
j=1

ĉn(bαn,j)Φn,j(ρ/b). (14)

where αn,j = zn,j/R and zn,j is the j-th zero of the Bessel
function Jn(x) and Φn,j(ρ) is given by

Φn,j(ρ) =
2zn,jJn(Rρ)

(z2n,j −R2ρ2)Jn+1(zn,j)
. (15)

Since

F̃ (ρ, φ) =
1

b

N∑
n=−N

einφĉn(ρ),

it follows from Lemma 3 , that

F̃ (ρ, φ) =
1

b

N∑
k=−N

F̃ (ρ, kτ)σk(φ), (16)

where σk(φ) is given by (8) and τ = 2π/(2N + 1). From
(13), we have F̃ (ρ, kτ) = 1

b

∑N
k=−N e

inkτ ĉn(ρ), where

ĉn(ρ) =
b

2π

∫ 2π

0

F̃ (ρ, φ)e−inφdφ.

Hence, by Eq.( 16), we have

ĉn(bαn,j) =
1

2π

∫ 2π

0

e−inφ

(
N∑

k=−N

F̃ (bαn,j , τk)σk(φ)

)
dφ

=
1

2N + 1

N∑
k=−N

F̃ (bαn,j , τk)e−iknτ ,

where the last equation follows from Lemma 4 with T = 2π.
Thus, from Eq. (14), we have

ĉn(ρ) =
1

2N + 1

∞∑
j=1

Φn,j(ρ/b)

N∑
k=−N

F̃ (bαn,j , τk)e−iknτ .

(17)
Finally by substituting Eq. (17) into (13), we obtain the result

Remark: By putting a = cos θ = d, b = sin θ = −c, in the
above theorem, we obtain a sampling formula for signals that
are bandlimited to a disc in the fractional Fourier transform.
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