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Abstract—Matrix completion is a classical problem in data
science wherein one attempts to reconstruct a low-rank matrix
while only observing some subset of the entries. Previous authors
have phrased this problem as a nuclear norm minimization
problem. Almost all previous work assumes no explicit structure
of the matrix and uses uniform sampling to decide the observed
entries. We suggest methods for selective sampling in the case
where we have some knowledge about the structure of the matrix
and are allowed to design the observation set.

Index Terms—Matrix completion, nuclear-norm minimization,
selective sampling

I. INTRODUCTION

Although large-scale data is easily acquired and accessible,
it is often highly incomplete. For example, data is often
missing in surveys in which participants only answer a subset
of questions, or sensor systems in which malfunctions or
power/memory restrictions are common. Even more familiar
may be the collaborative filtering problem—a problem of keen
interest for companies, such as Netflix or Amazon—in which
systems are tasked with recommending a subset of the vast
catalogue of products to users based on sparse user histories.

Mathematically, this is formulated as a matrix completion
problem. The goal is to reconstruct a large, low-rank matrix
having observed only a few entries. Let M ∈ Rm×n be a real-
valued m× n matrix and Ω ⊂ [m]× [n] be a set of observed
entries. That is, we assume that we only know the entry Mij

when the pair (i, j) is in Ω. From this incomplete data, we
would like to reconstruct the matrix M . If the matrix is known
to be inherently low rank, it may seem wise to look for the
lowest rank representation of the observed data. That is, one
may want to solve the problem

min
X

rank(X) subject to PΩ(X) = PΩ(M), (1)

where PΩ(X)ij = Xij if (i, j) ∈ Ω and PΩ(X)ij = 0
otherwise. However, this problem is NP-hard [1], so instead
Candés and Recht [2] suggested the more tractable convex
optimization problem

min
X
‖X‖∗ subject to PΩ(X) = PΩ(M), (2)

where ‖X‖∗ is the nuclear norm of X: the sum of the singular
values of X . In doing so, the problem is re-phrased as an `1-
minimization problem using the singular values of X . Since
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`1-minimization lends itself to sparse solutions, solving this
problem results in a low rank approximation to M . Several
authors have proven that if the observation set Ω, which is
typically generated uniformly at random, is large enough, then
(2) leads to exact reconstruction with high probability [1]–[3].

Recently, Molitor and Needell [6] adapted the ordinary
nuclear norm minimization method to account for structure in
the observed and unobserved entries, but most current methods
for matrix completion assume little about the structure of
the matrix M and take the observed entries from a uniform
random distribution. We propose a situation where the entries
need not be observed at random, but can be chosen to account
for the relationships between the columns. In application, this
could be thought of as designing a survey where important
questions are listed first, so that even if a user does not
complete the entire survey, their answers to these questions
can be used to intuit their answers to other related questions.

II. SELECTIVE SAMPLING STRATEGIES

Consider a scenario where M is assumed to have some
special structure, and Ω need not be drawn uniformly at
random from [m]× [n], but can be designed. Specifically, let
~Mj for 1 ≤ j ≤ n denote the columns of M . For a set τ ⊂ [n]

of size t ≤ n, we define Mτ to be the matrix whose columns
are ~Mj for j ∈ τ . Assume for a particular set τ ⊂ [n] and
that the corresponding matrix Mτ has some known structure.

As a first idea, we could assume that we know the correla-
tion matrix for Mτ . However, since the map M 7→ Corr(Mτ )
is non-convex, this information is difficult to incorporate into
a tractable minimization problem. Instead, if we assume that
the pairwise correlations between the columns of Mτ are near
1, then there is a strong possibility that Mτ is very low rank.
Accordingly, rather than assume we have information about
Corr(Mτ ), we assume that we know rank(Mτ ) = k � t. This
assumption is slightly stronger than assuming that the columns
of Mτ are well correlated. With this assumption, we can find a
basis {~v1, . . . , ~vk} for the column space of Mτ along with the
coordinates B of the columns { ~Mj}j∈τ in this basis. Once
we have identified these, we can use them as an additional
constraint. Thus we propose the minimization problem:

min
X
‖X‖∗ subject to PΩ(X) = PΩ(M)

and Xτ = V B
(3)



where V = [~v1 · · · ~vk]. It remains to design a strategy for
sampling entries of Mτ so that we can recover the basis V
and the coordinates of the columns in this basis.

A. Optimal Sampling

Assuming that rank(Mτ ) = k, we consider the problem of
explicitly determining the relationship between the columns
of Mτ while using the least possible amount of observations.
That is, our goal is to find a collection of k columns of Mτ

(we will call this collection M
(k)
τ = [ ~Mj1 · · · ~Mjk ]) and a

matrix B ∈ Rk×(t−k) such that

Mτ = M (k)
τ B. (4)

That is, the matrix V in (3) will consist of columns of Mτ .
The question is how to find M (k)

τ and B while observing as
little of Mτ as possible. Notice, it suffices to extract an invert-
ible k×k submatrix from Mτ . The columns corresponding to
this k × k submatrix will define M (k)

τ , whence we can solve
for all the coefficients in B with only kt observations. This
suggests the algorithm:

1) Randomly sample I = {i1, . . . , ik} ⊂ [m] and J =
{j1, . . . , jk} ⊂ τ .

2) If the matrix (Mij)(i,j)∈I×J is invertible, then

a) Define M (k)
τ = [ ~Mj1 · · · ~Mjk ]

b) Sample the remaining entries of the rows correspond-
ing to i1, . . . , ik

c) Solve for B using (4)
d) Break loop

3) If you reach this step, save the already observed entries
and return to step 1.

If M is densely defined with entries coming from a contin-
uous probability distribution, then a random k × k submatrix
will almost surely be invertible, and the loop will terminate
after one step (this may not be realistic with discrete data,
which could result in wasting observations while looking for
an invertible k× k submatrix). Counting the observed entries,
step 2a will require k2 observations. Determining the basis
coordinates B requires an additional k(t − k) observations
in step 2b. Then we simply need the remaining elements of
the columns of Mτ to perfectly reconstruct this portion of
the matrix—this requires k(m − k) observations. Thus we
will have observed k(t + m − k) total entries; this number
of observations is necessary and sufficient for perfect recon-
struction of Mτ , which is why we refer to this as optimal
sampling. After having used these observations, we assume
that the remaining observations are taken uniformly at random
from M[n]\τ . Since we are not assuming that M[n]\τ has
any special structure, we do not expect that there would be
any advantage to selectively sampling the entries. Note, the
optimization problem (3) can actually be ‘de-coupled’ at this
point: simply setting Xτ = M

(k)
τ B and performing nuclear

norm minimization only on X[n]\τ which will simplify the
computations.

There are two potential ways in which we can gain accu-
racy using this strategy: we may gain accuracy by perfectly

reconstructing Mτ , and we may gain accuracy by using fewer
observations while reconstructing Mτ , thus saving additional
observations for M[n]\τ . However, in application, it may not
be realistic to sample entire rows or columns of the matrix.

B. Finding Basis Coordinates from Random Sampling

Even if Ω is constructed uniformly at random, there will
likely be some invertible k×k submatrices within Mτ , which
can be used to intuit some relationships between the columns
of Mτ without sampling full rows or columns, which may
be unrealistic in practice. If we cannot sample full rows or
columns, we could still attempt to find a set of bases matrices
V`, each having the same column space as Mτ , and the
coordinates ~b` of a particular column ~M` in the basis V`, so
that ~M` = V`~b`. This suggests the algorithm:

1) Set τ∗ = ∅. Repeat steps 2 - 4 until the desired amount
of basis matrices V` and basis coordinates ~b` are found.

2) Randomly sample I = {i1, . . . , ik} ⊂ [m] and J =
{j1, . . . , jk} ⊂ τ .

3) If the matrix (Mij)(i,j)∈I×J is invertible, then
a) Choose ` ∈ τ \ τ∗, and add ` into τ∗.
b) Define V` = [ ~Mj1 · · · ~Mjk ].
c) Sample the entries in column ` from each of the rows

corresponding to i1, . . . , ik.
d) Solve for ~b` using ~M` = V`~b`.
e) Save V` and ~b` to use as a constraint.

4) When you reach this step, save the already observed
entries and return to step 2.

Having done this, we will have uncovered several relation-
ships ~M` = V`~b`, and we can solve the minimization problem

min
X
‖X‖∗ subject to PΩ(X) = PΩ(M)

and ~X` = V`~b`, for ` ∈ τ∗.
(5)

Fig. 1. True matrix M ∈ R50×50, which is reconstructed in Figure 2. The
first t = 20 columns have rank k = 2. The whole matrix has rank 6.



Fig. 2. Comparison of reconstruction error and observation indices for different sampling strategies. Here Mτ is the first t = 20 columns of M and has
rank k = 2. 30% of entries are observed in each case.

As we have designed it here, we are still selectively sam-
pling the matrix, so we refer to this as selective sampling.
However, if the observations were made uniformly at random,
we could search the observed entries of Mτ for invertible k×k
submatrices, and perform the same steps. This formulation
will not be as effective as optimal sampling, since it uses
more observations and it can discover redundant relationships
between the columns, but it may be more realistic in practice.

Note that in the selective sampling algorithm, we do not
know the full matrix V` at each step. However, we do know
the indices τ` = {j1, . . . , jk} which were used to construct
V`. Accordingly, in step 3e, we save all of the entries of
V` that we know—these are the entries of Mτ which are
observed. Likewise, the constraint in (5) should actually read
~X` = Xτ`

~b` for ` ∈ τ∗. We are enforcing that each of these
specific relationships between the columns of Xτ must hold.

III. RESULTS

We implemented the ordinary matrix completion with uni-
form sampling, as well as the optimal sampling method and
the selective sampling method. We tested these methods on
matrices M ∈ R50×50 where Mτ is simply the first t columns
of the matrix and has rank k < t. We tested the methods across
several different values of t, rank k and observation rate p.

In Figure 2, we see the results of the nuclear norm
minimization with uniform sampling, optimal sampling or

selective sampling. Here M is as described in Figure 1 and
the observation rate is p = 0.3, meaning that 30% of entries
are observed. The relative error is measured in the operator
norm. We report the average error over 100 trials where the
observation indices are chosen independently in each trial. The

Fig. 3. Relative accuracy gain as a function of the size and rank of Mτ .
Observation rate is p = 0.3.



(a) rank(Mτ ) = 1 (b) rank(Mτ ) = 4

Fig. 4. Average relative error as a function of observation rate for both uniform sampling and optimal sampling and rank(Mτ ) = 1 or 4.

optimal sampling strategy led to an average accuracy gain
of nearly 80% and the selective sampling strategy led to an
average accuracy gain of roughly 40%.

Next, we explored how the reconstruction errors compare
when different parameters are adjusted. Recall, the optimal
sampling method requires k(t + m − k) observations to
perfectly reconstruct Mτ . We should observe accuracy gains
proportional to how much smaller this number is than the
expected number of observations from Mτ using uniform
sampling (which is pmt). Thus treating m, the size of the
matrix, as fixed, we should see the largest accuracy gains
when t is large, p is large, or k is small. First, fixing p = 0.3
and again working with a 50 × 50 matrix M , we computed
the gain in reconstruction accuracy when k = 1, . . . , 10 and
t = 5, 10, 15, 20, 25. The results are displayed in Figure 3. This
figure aligns fairly well with our expectations. Here M[n]\τ has
rank 4 in each case.

Finally, we fix t (the size of Mτ ) and vary the observation
rate p and the rank k of Mτ . The results are shown in Figure 4.
In these simulations, M is a 30×30 matrix and t = 10 so that
Mτ comprises the first 1/3 of the columns. The observation
rate is allowed to vary from p = 0 to p = 1, though in the
optimal sampling case, the results are not meaningful until the
total number of observations pmn is larger than the amount
needed to construct B and M (k)

τ , which is k(m+t−k). Again,
this figure aligns with our intuition. For larger k = rank(Mτ ),
optimal sampling requires a larger observation rate in order to
see accuracy gains over uniform sampling.

IV. CONCLUSION

The matrix completion problem is at the forefront of big
data analysis. In application, there are often intuitive correla-
tions between columns of the incomplete matrix: the answers
to questions on a medical survey may be predictive of each
other, or viewers may have similar opinions regarding movies

in a given genre. Most of the previous work on this problem
has focused on the general case, neglecting to consider any
structure within the matrix. Building off of this work, we have
suggested two methods for the matrix completion problem
under the assumption that some portion of the matrix is
known to be very low rank and we are allowed to design the
observation set. The first method, which we termed optimal
sampling, attempts to perfectly represent the structured portion
of the matrix using the minimum amount of observations. In
certain scenarios, this sampling strategy led to large gains in
accuracy, but it may be unrealistic in practice. Accordingly, we
described a second method, selective sampling, which forsakes
perfect reconstruction of the structured portion of the matrix
while still uncovering some of the structure. This method, too,
led to accuracy gains in certain regimes.
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