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Abstract—Low-rank matrix models have been universally use-
ful for numerous applications starting from classical system iden-
tification to more modern matrix completion in signal processing
and statistics. The Schatten-1 norm, also known as the nuclear
norm, has been used as a convex surrogate of the low-rankness
since it induces a low-rank solution to inverse problems. While
the Schatten-1 norm for low-rankness has a nice analogy with the
`1 norm for sparsity through the singular value decomposition,
other matrix norms also induce low-rankness. Particularly as one
interprets a matrix as a linear operator between Banach spaces,
various tensor product norms generalize the role of the Schatten-
1 norm. Inspired by a recent work on the max-norm-based matrix
completion, we provide a unified view on a class of tensor product
norms and their interlacing relations on low-rank operators.
Furthermore we derive entropy estimates between the injective
and projective tensor products of a family of Banach space pairs
and demonstrate their applications to matrix completion and
decentralized subspace sketching.

Index Terms—Low-rank matrix, tensor product, Banach
spaces, entropy number, matrix completion, sketching

I. INTRODUCTION

Low-rank matrix models play a key role in solving inverse
problems in signal processing, statistics, and data science
[1]. The effectiveness of these models is often characterized
through the geometry of a convex relaxation of the set of
rank-constrained matrices. These convex relaxations allow
us to reformulate inverse problems as convex optimization
programs and derive theoretical guarantees on the accuracy
of their solution under certain randomness assumptions on the
observation model. The now standard relaxation for the set
of rank-constrained matrices specified through the Schatten-
1 norm (sum of singular values), also known as the nuclear
norm. The set of rank-r matrices is included in a nonconvex
cone whose members satisfy

}M}HS ¤ }M}S1
¤ ?

r}M}HS, (1)

where } � }S1
is the Schatten-1 norm and } � }HS is the Hilbert-

Schmidt or Frobenius norm. The interlacing inequalities in (1)
implies that the Schatten-1 norm of a rank-r matrix is equiva-
lent to its spectral norm up to factor

?
r. The dependence on

the rank here is sharp.
For inverse problems that involve random projections of

low-rank matrices [2] or random quadratic forms [3], the
Schatten-1 norm relaxation allows recovery with near-optimal
sample complexity without any additional constraints on the
matrix M being sensed.

The Schatten-1 norm is not the only relaxation for the set of
rank-constrained matrices. For instance, the “max norm” [4]
of a matrix M is given by

}M}max :� inf
 }U}2Ñ8 }V }2Ñ8 | M � UV T

(
,

where }U}2Ñ8 is the induced norm }U}2Ñ8 �
max}x}2¤1 }Ux}8. If M is rank-r, then its max norm
obeys an analog of (1),

}M}8 ¤ }M}max ¤
?
r}M}8,

where }M}8 is the largest magnitude entry in M . In [5], it
is shown that randomly selecting samples provides a stable
embedding (see Proposition IV.2 below) of all matrices in the
set  

M : max
�}M}max{

?
r, }M}8

� ¤ α
(
, (2)

and that this stable embedding leads to near-optimal sample
complexity guarantees for the matrix completion problem
when the underlying matrix does indeed have rank at most
r and maximum entry at most α.

Another relaxation is given in [6], where the problem of
decentralized subspace sketching is considered. Decentral-
ized subspace sketching estimates a low-dimensional subspace
from their compressive linear measurements of sampled vec-
tors. Mathematically this problem is identical to multivariate
regression [7]. In [6], the “mixed norm” is introduced,

}M}mixed :� inf
 }U}HS }V T}1Ñ2 | M � UV T

(
,

where }V T}1Ñ2 is the induced norm }V T}1Ñ2 �
max}x}1�1 }V Tx}2. The authors show that sketching each
column of a matrix independently provides a stable embedding
(see Proposition IV.4 below) of all matrices in the set 

M : max
�}MT}mixed{

?
r, }M}1Ñ2

� ¤ α
(
, (3)

and that this stable embedding leads to near-optimal sample
complexity guarantees for the decentralized sketching problem
when the underlying matrix does indeed have rank at most r
and α is chosen appropriately.

In this paper, we show how the Schatten-1, max, and
mixed norms are all examples of tensor product norms on
linear operators that map between pairs of Banach spaces.
Then following the properties and relations among tensor
product norms in the functional analysis literature (e.g., [8]),
we generalize the notions of “operator norm” and “nuclear



norm”, and arrive at a family of convex relaxations for low-
rank matrices that can be chosen to match the structure of
the inverse problems for which they are being used. We give
bounds on the complexity of the analogs of the sets (2),(3) by
providing entropy estimates of the associated operators.

Considering both matrix completion and decentralized sub-
space sketching as our main examples, we are particularly
interested in the tensor product of `m8 and `np with 2 ¤ p ¤ 8.
We show the rank-driven interlacing property between tensor
norms and derive entropy estimates using Maurey’s empirical
method [9] through embedding of a Hilbert space to a higher
dimensional Banach space with `1 norm.

The remainder of this paper is organized as follows: We
recall relevant definitions and properties of Banach spaces
and norms in Section II. The interlacing properties between
the injective and projective tensor norms of rank-r operators
are derived in Section III. Entropy estimates on the identity
map on tensor products with different norms are shown in
Section IV, followed by its applications to matrix completion
and decentralized subspace sketching in Section V. Finally we
finish the paper with concluding remarks and the summary of
our extension to more general settings.

II. PRELIMINARIES

We first recall definitions and properties of Banach spaces
and norms in the context of the tensor product.

A. Tensor product of Banach spaces

We interpret a matrix M P Rm�n as the matrix represen-
tation of a linear operator from a vector space of dimension
n to another vector space of dimension m. Let X� denote
the Banach space dual of X . The vector space of all linear
operators from X� to another Banach space will be denoted
by LpX�, Y q. Then BpX�, Y q will denote the subset of
LpX�, Y q consisting of linear operators with a finite operator
norm. The tensor product of two Banach spaces X and Y ,
denoted by X b Y , is identified to LpX�, Y q provided that
either X or Y is finite dimensional.

B. Tensor product norms

There are many ways to define a norm on the tensor
product of two Banach spaces. We are mostly interested in
the following two tensor norms.

The injective tensor norm on X b Y is defined by

}T }_ :� sup
x�PBX� ,y�PBY�

| xx� b y�, T y |,

where BX� and BY � are the unit balls in X� and Y �

respectively. Then X qb Y denotes the corresponding Banach
space. The injective tensor norm of T coincides with the
operator norm of T P LpX�, Y q.

The projective tensor norm on X b Y is defined by

}T }^ :� inf

#¸
n

}xn}X}yn}Y
����� T �

¸
n

xn b yn

+

and the corresponding Banach space is written as X pb Y .
When X and Y are finite dimensional, the projective tensor
norm of T coincides with the 1-nuclear norm [8].

The 2-summing norm of T P X b Y , denoted by π2pT q, is
defined as the smallest constant c that satisfies�¸

i

}Tx�i }2Y
�1{2

¤ c sup

$&%
�¸

i

|xx, x�i y|2
�1{2

������ x P BX
,.-

for any sequence px�i q � X�.
We also consider the γ2 norm, which is defined though

the optimal factorization through a finite dimensional Hilbert
space. The γ2 norm of T P X b Y is defined by

γ2pT q :� inft}T1}_}T2}_ | d P N, T1 P BpX�, `d2q,
T2 P Bp`d2, Y q, T � T2T1u.

(4)

Particularly, if rankpT q ¤ r, the decomposition T � T2T1 in
(4) can be made via a Hilbert space of dimension up to r.

III. RELATION BETWEEN TENSOR PRODUCT NORMS FOR
RANK-r OPERATORS

Next we demonstrate the relation between the injective and
projective tensor norms of rank-r operators from `n1 to a class
of Banach spaces.

A. Linear operators in `n8 b `m8

Linial et al. [10] showed that the γ2 norm on `n8 b `m8 is
upper-bounded by the operator norm multiplied by the square
root of the rank. In fact, their result is derived from the fact
that the Banach-Mazur distance between a finite dimensional
Banach space and a Hilbert space is no larger than the square
root of the dimension. It indeed applies to any pair of Banach
spaces.

Lemma III.1. Suppose that T P X b Y with Banach spaces
X,Y satisfies rankpT q ¤ r. Then }T }_ ¤ γ2pT q ¤

?
r}T }_.

Furthermore for a linear operator from `n1 to `m8, it is well
known that its γ2 norm and the 1-nuclear norm are equivalent
up to the Grothendieck constant.

Lemma III.2 (little Grothendieck (e.g., [8])). Let T P `n8b`m8.
Then γ2pT q ¤ }T }^ ¤ KGγ2pT q, where KG denotes the
Grothendieck constant that satisfies 1.67 ¤ KG ¤ 1.79.

The following corollary that shows the relation between the
injective and projective tensor norms on `n8 b `m8 is a direct
consequence of Lemmas III.1 and III.2.

Corollary III.3. Let T P `n8 b `m8 satisfy rankpT q ¤ r. Then
}T }_ ¤ }T }^ ¤ KG

?
r}T }_.

B. Linear operators in `n8 b `mp with 2 ¤ p   8
When T P `n8b `mp with 2 ¤ p   8, we derive the relation

between the injective and projective tensor norms in several
steps given by the following lemmas. We first show that the
2-summing norm of the adjoint does not exceed the operator
norm multiplied by the square root of the rank.



Lemma III.4. Let T P `n8 b `mp satisfy that its adjoint T�

is 2-summing and rankpT q ¤ r. Then }T }_ ¤ π2pT�q ¤?
r}T }_.

Next we show that the 1-nuclear norm of T P Lp`n1 , `mp q
with 2 ¤ p   8 is equivalent to the 2-summing norm of the
adjoint T� up to constant

?
2p.

Lemma III.5. Let T P `n8 b `mp with 2 ¤ p   8 satisfy that
T� is 2-summing and rankpT q ¤ r. Then π2pT�q ¤ }T }^ ¤?
2p π2pT�q.
By combining Lemmas III.4 and III.5, we obtain the fol-

lowing corollary.

Corollary III.6. Let T P `n8 b `mp with 2 ¤ p   8 satisfy
rankpT q ¤ r. Then }T }_ ¤ }T }^ ¤ ?

2p
?
r}T }_.

While the relation between the injective and projective
tensor norms of rank-r operators is useful for the entropy
estimate, it is often easier to compute the 2-summing norm
of the adjoint than the projective norm. Below we show that
π2pT�q is written through an optimal factorization similarly
to the γ2 norm for the tensor product `n8 b `m8.

Lemma III.7. Let T P `n8 b `mp . Then

π2pT�q :� inftπ2pT�1 q}T�2 }_ | d P N, T�1 P Lp`mp1 , `d2q,
T�2 P Lp`d2, `n8q, T� � T�2 T

�
1 u,

(5)

where 1{p� 1{p1 � 1.

In a special case when T P `n8 b `m2 , the 2-summing norm
of T� is computed by the following optimization problem:

π2pT�q � inft}T1}HS}T2}_ | d P N, T1 P Lp`d2, `m2 q,
T2 P Lp`n1 , `d2q, T � T1T2u.

(6)

Indeed, it trivially holds that }T�1 }_ � }T1}_. Furthermore,
for every T�1 : `m2 Ñ `d2, we have

π2pT�1 q � }T�1 }HS � }T1}HS � π2pT1q.
Therefore, (6) follows from (5). In a companion paper, we
show that (6) is written as a semidefinite program.

IV. ENTROPY ESTIMATES OF TENSOR PRODUCTS

For symmetric convex bodies D and E, the covering
number NpD,Eq and the packing number MpD,Eq are
respectively defined by

NpD,Eq :� min
!
l
�� Dy1, . . . , yl P D, D �

¤
1¤j¤l

pyj � Eq
)
,

MpD,Eq :� max
!
l
�� Dy1, . . . , yl P D, yj � yk R E, @j � k

)
.

Let X,Y be Banach spaces. For T P LpX,Y q, the dyadic
entropy number [11] is defined by

ekpT q :� inftε ¡ 0 |MpT pBXq, εBY q ¤ 2k�1u.
We will use the following shorthand notation for the weighted
summation of the dyadic entropy numbers:

E2,1pT q :�
8̧

k�1

k�1{2ekpT q,

which is up to a constant equivalent to the entropy integral³8
0

a
lnNpT pBXq, εBY qdε [12], which plays a key role in

analyzing properties on random linear operators on low-rank
matrices.

In this section, we derive the E2,1 of the identity operator
from the injective tensor product to the projective tensor
product of a set of Banach space pairs. Note that these
tensor product spaces are valid Banach spaces too. The main
machinery in deriving these estimates is Maurey’s empirical
method [9], summarized in the following lemma.

Lemma IV.1. Let T P Lp`n1 , `m8q. Then

E2,1pT q ¤ C
a
1� lnpm_ nq p1� lnpm^ nqq3{2}T }_.

In order to apply Lemma IV.1 to `n8 b `m8, we use the fact
that `m8 qb `n8 is isometrically isomorphic to `mn8 . In fact,

}M}`m
8
qb`n
8

� max
1¤j¤n

}Mej}8 � }vecpMq}8,

where ej denotes the jth column of the n-by-n identity matrix
and vecp�q : Rm�n Ñ Rmn vectorizes M P Rm�n by stacking
its columns vertically. On the other hand, the trace dual and
Banach space dual of `n1 pb `m1 are `m1 qb `n1 and `n8 qb `m8,
respectively. Therefore, we also have that `m1 pb `n1 is isotropi-
cally isomorphic to `mn1 . With these isometric isomorphisms,
Lemma IV.1 provides the following estimate.

Proposition IV.2. There exists a numerical constant C such
that

E2,1pid : `m8 pb `n8 Ñ `m8 qb `n8q ¤ C
?
m� n p1� lnpmnqq3{2.

Next, to apply Lemma IV.1 to `n8 b `mp with 2 ¤ p  
8, we need the following result that shows embedding of
finite dimensional `p space to `1 up to a small Banach-Mazur
distance.

Lemma IV.3 ([9, Lemma 5]). Let 1   p ¤ 2 and ε ¡ 0. There
is a constant cpp, εq ¡ 0 for which the following property
holds: For each m, there exists k ¥ cpp, εqm so that `m1
contains a subspace p1�εq-isomorphic to `kp , i.e., the Banach-
Mazur distance is upper-bounded by p1� εq.

Then we obtain the following entropy estimate for `n8b `mp
with 2 ¤ p   8 by combining Lemmas IV.1 and IV.3.

Proposition IV.4. Let 2 ¤ p   8. Then

E2,1pid : `n8 pb `mp Ñ `n8 qb `mp q ¤ C
?
n�m p1� lnpnmqq3{2.

V. APPLICATIONS

We illustrate the utility of the entropy estimates in Sec-
tion IV to derive performance guarantees of low-rank recov-
ery problems. We consider the linear inverse problem that
reconstructs the unknown matrix M0 of rank up to r from
the measurements given by

b � ApM0q � z

with a linear operator A and random noise z. Particularly we
illustrate on two applications where each entry of ApM0q is
written as the inner product of M0 and a given rank-1 matrix.



We interpret M0 P Cm�n as a rank-r linear operator or
equivalently a tensor in `np b `mq , where p and q are chosen
according to the structure in A. Then we consider the estimate
given by the following optimization problem:

minimize
M

}b�ApMq}22
subject to |||M |||p,q,r ¤ α,

(7)

where

|||M |||p,q,r :� max
�}M}^{

?
r, }M}_

�
.

The projective tensor norm can be replaced by an equivalent
norm to enable efficient implementation. This does not break
performance guarantees we present below.

A. Matrix completion

The optimization in (7) reduces to the max-norm con-
strained matrix completion [5] when p � 8 and q � 8.
For brevity, we consider the square matrix case (m � n). By
applying the entropy estimate in Proposition IV.2 to a version
of the Rudelson-Vershynin lemma [13, Proposition 2.6], which
generalizes upon previous works [14], [15], [16], we obtain
the following concentration result on the quadratic form with
random entriwise sampling operator.

Proposition V.1. Let pil, jlq for l � 1, . . . , L be indepen-
dent copies of a uniform random variable on t1, . . . , nu �
t1, . . . , nu. Then

sup
|||M |||8,8,r¤α

����� 1L
Ļ

l�1

|xeil b ejl ,My|2 � }M}2HS

n2

�����
¤ Cα

a
rn log3 n?
L

�
}M}HS

n
� α

a
rn log3 n?
L

�
holds except with probability Ope�nq.

This concentration inequality provides an alternative deriva-
tion of the performance guarantee on the max-norm con-
strained matrix completion [5].

B. Decentralized subspace sketching

Decentralized subspace sketching is formulated as the opti-
mization in (7) with A that randomly samples entries of each
column of the unknown matrix M0. We choose Banach spaces
by p � 8 and q � 2 for this problem. By plugging in the
entropy estimate in Proposition IV.4 to the suprema of chaos
processes by Krahmer et al. [17], we obtain the following
concentration inequality.

Proposition V.2. Let bl,k for l � 1, . . . , L and k � 1, . . . , n
be independent copies of a Gaussian vector ξ P Rm with
Erξs � 0 and ErξξJs � Im. Let d � m� n. Then

sup
|||M |||8,2,r¤α

�����}M}2HS �
1

L

Ļ

l�1

ņ

k�1

|xbl,k b ek,My|2
�����

¤ Cα2
a
rd log3 d?
Ln

�
1�

a
rd log3 d?
Ln

�

holds except with probability Ope�crdq.
This result plays a key role in deriving a performance

guarantee of decentralized subspace sketching by a convex
program at a near optimal sample complexity, which will be
presented in a companion paper.

VI. DISCUSSION

We interpreted a low-rank matrix as a linear operator
between two Banach spaces or equivalently as an element in
the tensor product space. Various matrix norms that induced a
low-rank solution to inverse problems are interpreted as tensor
product norms extensively studied in the functional analysis
literature. For a class of tensor products of `n8 and `mp for
2 ¤ p ¤ 8, we show the interlacing properties between
the injective and projective tensor norms and derive entropy
estimates between two corresponding tensor product spaces.
We illustrated the use of obtained estimates on matrix com-
pletion and decentralized subspace sketching. Omitted proofs
and further generalization on a broader class of tensor products
including operators between infinite dimensional spaces will
be available in the full version manuscript [18].
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