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New Algorithms and Improved Guarantees for
One-Bit Compressed Sensing on Manifolds

Mark A. Iwen†, Eric Lybrand‡, Aaron A. Nelson‡*, Rayan Saab‡

Abstract—We study the problem of approximately
recovering signals on a manifold from one-bit lin-
ear measurements drawn from either a Gaussian
ensemble, partial circulant ensemble, or bounded
orthonormal ensemble and quantized using Σ∆ or
distributed noise shaping schemes. We assume we are
given a Geometric Multi-Resolution Analysis, which
approximates the manifold, and we propose a con-
vex optimization algorithm for signal recovery. We
prove an upper bound on the recovery error which
outperforms prior works that use memoryless scalar
quantization, requires a simpler analysis, and extends
the class of measurements beyond Gaussians. Finally,
we illustrate our results with numerical experiments.

Index Terms—Compressed sensing, quantization,
one-bit, manifold, rate-distortion

I. INTRODUCTION

Compressed sensing [3], [5] demonstrates that
structured high dimensional signals such as sparse
vectors or low-rank matrices can be recovered
from few random linear measurements. Recovery
is typically formulated as a convex optimization
problem whose minimizer cannot be expressed
analytically and must be solved for using numeri-
cal algorithms running on digital devices. Thus, it
is necessary to consider the effect of quantization
in the design of the recovery algorithms. Indeed,
sparse vector recovery and low-rank matrix recov-
ery have been studied in the presence of various
quantization schemes [7], [8], [11], [12], [13]. We
look to extend these results to account for those
structured signals that lie on a compact, low-
dimensional submanifold of RN for which we have
a Geometric Multi-Resolution Analysis (GMRA)
[1]. Our work is motivated by the results of Iwen
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et al. in [9] where they assume memoryless scalar
quantized Gaussian measurements, and we pro-
vide better error bounds that hold for a wider class
of measurement ensembles.
As in [9], a key component of our technique

is the GMRA which approximates the manifold
at various levels of refinement. At each level the
GMRA is a collection of approximate tangent
spaces about certain known "centers", and the
quality of the approximation improves with every
level. Unlike in [9], the quantization schemes that
we use are Σ∆ or distributed noise shaping meth-
ods (see, e.g., [7], [8]) and the compressed sensing
measurements that our results apply to include
those drawn from Gaussian ensembles, partial
circulant ensembles (PCE) or bounded orthonor-
mal ensembles (BOE) (see [8] for precise defi-
nitions). Our proposed reconstruction method is
summarized in Algorithm 1. This simple algorithm
first finds a GMRA center that quantizes to a bit
sequence close to the quantized measurements,
where "closeness" is determined using a pseudo-
metric that respects the quantization; it then op-
timizes over all points in the associated approxi-
mate tangent space to enforce, as much as pos-
sible, the consistency of the quantization. Using
the results of [8] we prove that the quantization
error associated with our proposed reconstruction
algorithm decays polynomially or exponentially as
a function of the number of measurements, de-
pending on the quantization scheme. This greatly
improves on the sub-linear error decay associated
with scalar quantization in [9].

II. BACKGROUND

In [9], Iwen et al. study the case where mea-
surements y = Ax of a signal x on a manifold
K ⊂ SN−1 are quantized via memoryless scalar
quantization (MSQ). For a discrete set A and
Q(x) := argminz∈A |x − z|, the measurements are

q j =Q(〈a j , x〉), j = 1, . . . ,m.
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For example, one could take A = {±1} and Q(·) =
sign(·). [9] proposes an algorithm for recovering
x from such measurements and shows that the
associated error decays like O(m−1/7). Such slow
error decay, associated with MSQ, has also been
seen in the context of sparse vector recovery in
the compressed sensing literature. Indeed, it is
known in that setting that the error under any
reconstruction scheme using MSQ measurements
cannot decay faster than O(m−1) [6] (see also [2]).
So, to acheive better error rates one must use more
sophisticated quantization schemes. For example,
in the sparse vector setting noise shaping tech-
niques such as Σ∆ and distributed noise shap-
ing leverage redundancy of the measurements to
ensure error decay like O(m−r ) or O(β−cm) for
some parameters r ∈ N, β > 1 that depend on the
quantization scheme, e.g., [4], [14]. As we will also
use these schemes, we now briefly describe them.
Each of the quantization methods mentioned

above employs a state variable u ∈ Rm and quan-
tizes measurements in a recursive fashion: q j =
Q

(
f (y j , . . . , y1,u j−1, . . . ,u1)

)
, where f is some func-

tion designed for the quantization scheme. The
state variable is then updated via the state rela-
tion Ax − q = Hu, where H : Rm → Rm is a lower-
triangular Toeplitz matrix. Important for the anal-
ysis (and for practical reasons) is that H , f are
chosen so that whenever ‖x‖∞ is bounded, we
have ‖u‖∞ <C ; the upper bound C is often referred
to as the stability constant of the quantization
scheme. For a more detailed explanation of these
noise shaping techniques, the interested reader
may refer for example to [8]. For the sake of
expositional simplicity, we will only consider the
Σ∆ setting, but our arguments work for distributed
noise shaping under very minor adjustments.

III. PROBLEM FORMULATION ANDNOTATION
For an integer `, [`] := {1, . . . ,`}. We use & and .

for inequalities that hold up to a constant; sub-
scripts indicate the constant depends on a spec-
ified parameter. Let K ⊂ B N

2 be a d-dimensional
submanifold of the unit `2-ball in RN . We assume
that we have a GMRA of K , which we make precise
below. First, for a set T ⊂RN and ρ > 0, define

tubeρ(T ) := {
x ∈RN : inf y∈T ‖x − y‖2 ≤ ρ

}
.

Definition 1 ([10]). Let J ∈ N and K0, . . . ,K J ∈ N. A
GMRA of K is a collection {(C j ,P j )} j∈[J ] of centers
C j = {c j ,k }k∈[K j ] and affine projections

P j =
{
P j ,k : RN →RN : k ∈ [K j ]

}

with the following properties:
1)Affine Projections. Every P j ,k is an orthogo-
nal projection onto some d-dimensional affine
space which contains the center c j ,k .

2)Dyadic Structure. The number of centers at
each level is bounded by |C j | = K j ≤CC 2d j for an
absolute constant CC ≥ 1. Moreover, there exist
C1 > 0, C2 ∈ (0,1] such that
a)K j ≤ K j+1 for all j ∈ [J −1],
b)‖c j ,k1 − c j ,k2‖2 > C12− j for all j ∈ [J ], k1 6= k2 ∈

[K j ],
c)For each j ∈ [J ] \ {0} there exists a parent
function p j : [K j ] → [K j−1] with

‖c j ,k − c j−1,p j (k)‖2 ≤C2 min
k ′∈[K j−1]\{p j (k)}

‖c j ,k − c j−1,k ′‖2.

3)Multiscale Approximation. The projectors in P j

approximate K in the following sense:
a)There exists j0 ∈ [J − 1] such that c j ,k ∈

tubeC12− j−2 (K ) for all j ≥ j0 and k ∈ [K j ].
b)For each j ∈ [J ] and z ∈RN , let

c j ,k j (z) ∈ argmin
c j ,k∈C j

‖z − c j ,k‖2.

Then for each z ∈ K there exist Cz ,C̃z > 0 so
that ‖z −P j ,k j (z)z‖2 ≤Cz 2−2 j for all j ∈ [J ] and

‖z −P j ,k ′z‖2 ≤ C̃z 2− j (1)

whenever j ∈ [J ] and k ′ ∈ [K j ] satisfy

‖z − c j ,k ′‖2 ≤ 16max
{‖z − c j ,k j (z)‖2, C12− j−1}.

Let {(C j ,P j ,k )} j be a GMRA of a smooth com-
pact manifold K ⊂ (1 − µ)B N

2 for some µ ∈ (0,1),
and define the scale- j GMRA approximation K̂ j :=
{P j ,k j (z)z : ‖z‖2 ≤ 1} ∩ B N

2 . We suppose that j0 is
large enough so that supx∈K C̃x 2− j0 ≤ µ to ensure
{P j ,k ′x : x ∈ K , ( j ,k ′) as in 3.b of Definition 1} ⊂ B N

2 ,
and further assume that tubeC12− j0−2 (K ) ⊂ B N

2 which
ensures C j ⊂ K̂ j for j ≥ j0. The number of mea-
surements required for our theoretical guarantees
to hold will depend on two notions of complexity
of K and the GMRA. For g ∼N (0, IN ), define

w(S) := E sup x∈S 〈g , x〉, rad(S) := sup x∈S ‖x‖2,

and, for j ≥ j0, define

CK := max
{
C1, sup z∈K C̃z

}
, S := K ∪ K̂ j .

Now, let Q be a stable r th order Σ∆ quantizer with
stability constant C (r ) and associated alphabet A .
Let x ∈ K , A ∈Rm×N be a standard Gaussian matrix
(or a matrix drawn from a PCE/BOE), Dε ∈RN×N a
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diagonal matrix with random signs (independent
of A) along the diagonal, Φ := ADε and

q :=Q (Φx) .

Our goal, given q and Φ, is to approximate x and
show that the associated error bounds decay fast as
a function of m.
A useful fact is that the binary embedding pro-

vided by Σ∆ quantization approximately preserves
Euclidean distance via a related pseudo-metric
on the quantized vectors, defined as follows. For
p ≤ m, define λ := m/p =: r λ̃− r + 1 and v ∈ Rλ

be the (row) vector whose j th entry v j is the
j th coefficient of the polynomial of (1 + z + . . . +
zλ̃)r . Set γ = ‖v‖1/‖v‖2 and define Ṽ : Rm → Rp by
Ṽ = 9

8‖v‖2
p

p Ip ⊗ v, where ⊗ denotes to the Kro-
necker product. Then the pseudo-metric is given
by dṼ (x, y) := ‖Ṽ (x − y)‖2.

IV. MAIN RESULTS
We now present our recovery algorithm and its

associated error guarantees.

Algorithm 1 Reconstruction Algorithm
Step 1: Find c j ,k ′ ∈ argminc j ,k∈C j

‖Ṽ (Q(Φc j ,k )−q)‖2.
Step 2: If ‖Ṽ (Q(Φc j ,k ′)−q)‖2 = 0, set x] = c j ,k ′ ; else

x] =argmin
z∈RN

∥∥Ṽ
(
Φz −q

)∥∥
2 s.t. z = P j ,k ′(z), ‖z‖2 ≤ 1.

Theorem 2. Suppose we have a GMRA of K ⊂ (1−
µ)B N

2 at level j ≥ j0. Let Q be a stable r th order Σ∆
quantizer with r = O( j ), associated alphabet A =
{±(1−α)

p
m} where α−1 & rad2(S −S)22( j+1), and

m
r−1

r−1/2 &γ2(1+ν)2 log4(N ) j 224 j (2)
× rad(S −S)4 max

{
1, w2(S −S)rad−2(S −S)

}
.

Then with probability exceeding 1−e−ν, for all x ∈
K , x] from Algorithm 1 satisfies

‖x]−x‖2 .r C̃x 2− j .

Proof. By the triangle inequality we have

‖x]−x‖2 ≤ ‖x]−P j ,k ′x‖2 +‖P j ,k ′x −x‖2.

Both terms are bounded by C̃x 2− j , the first by
Lemma 4 and the second by Lemma 3 and Equa-
tion (1) from Definition 1.

Remark 1. As Lemma 4.3 of [9] shows, w(S −S).
w(K )+√

d j . This is a suitable bound for coarse
GMRA scales, i.e. j . log(N ). However, for j &

log(N ) one can slightly modify the definition of S
and use the bound w(S − S) . (w(K )+ 1)log(N ) as
proven in Lemma 4.5 of [9], albeit this requires
some modifications to the proof of Theorem 2.
Please see Remark 4.15 of [9] for more details, as
we shall leave the latter case for future work.

Lemma 3. Under the assumptions of Theorem 2,
with probability exceeding 1−e−ν, for all x ∈ K , the
center c j ,k ′ chosen in Step 1 of Algorithm 1 satisfies

‖x − c j ,k ′‖2 ≤ 16max
{‖x − c j ,k j (x)‖2,C1 ·2− j−1}. (3)

Proof. Theorem 5.2 and Remarks 3, 5
of [8] state that if m

r−1
r−1/2 ≥ p & γ2(1 +

ν)2 log4(N ) max{1,w2(S−S)rad−2(S−S)}
α2 and we choose

r = b λ
2Ce c1/2, where λ = m

r−1
r−1/2 /p and C > 0, then

with probability exceeding 1−e−ν∣∣dṼ

(
Q(Φc j ,k ), q

)−‖c j ,k −x‖2
∣∣

.max
{p
α,α

}
rad(S −S)+e−c

p
λ

for all c j ,k ∈C j . Conditioning on this, we have

dṼ

(
Q(Φc j ,k ′), q

)≤ dṼ

(
Q(Φc j ,k j (x)), q

)
=⇒ ‖c j ,k ′ −x‖2 .r ‖c j ,k j (x) −x‖2

+max
{p
α,α

}
rad(S −S)+e−c

p
λ.

For c j ,k ′ to satisfy (3) (i.e., part 3.b of Definition 1),
it suffices to choose α small and λ large, so that
max{

p
α,α}rad(S − S)+ e−c

p
λ ≤ 15C12− j−1. Choosing

λ& j 2 (hence, r = O( j )) and α−2 & rad4(S −S)24( j+1)

realizes the above bound.

Lemma 4. Under the assumptions of Theorem 2,
with probability exceeding 1− e−ν, for all x ∈ K , x]

from Algorithm 1 satisfies ‖x]−P j ,k ′x‖2 .r C̃x 2− j .

Proof. By optimality of x] and feasibility of P j ,k ′x,
the triangle inequality gives us

0 ≤ ∥∥Ṽ
(
ΦP j ,k ′x −q

)∥∥
2 −

∥∥∥Ṽ
(
Φx]−q

)∥∥∥
2

≤ 2
∥∥Ṽ

(
ΦP j ,k ′x −q

)∥∥
2 −

∥∥∥ṼΦ
(
x]−P j ,k ′x

)∥∥∥
2

.

Define q∗ :=Q
(
ΦP j ,k ′x

)
. Then∥∥∥ṼΦ

(
x]−P j ,k ′x

)∥∥∥
2
≤ 2

∥∥Ṽ
(
ΦP j ,k ′x −q∗+q∗−q

)∥∥
2

≤ 2
∥∥Ṽ

(
ΦP j ,k ′x −q∗)∥∥

2 +2dṼ (q, q∗).

Lemma 4.5 of [8] states that ‖Ṽ (ΦP j ,k ′x − q∗)‖2 .r

e−c
p
λ.r 2− j , while Theorem 5.2 of [8] and (1) (via

Lemma 3) imply dṼ (q, q∗). C̃x 2− j with probability
exceeding 1−e−ν. Therefore, we have∥∥∥ṼΦ

(
x]−P j ,k ′x

)∥∥∥
2
.r C̃x 2− j . (4)
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By the definition of S, we have x],P j ,k ′x ∈ S.
Equation (5.8) in the proof of Theorem 5.2 of
[8] states that with probability exceeding 1− e−ν∥∥∥ṼΦ

(
x]−P j ,k ′x

)∥∥∥
2
& ‖x]−P j ,k ′x‖2−2− j . With (4), this

yields ‖x]−P j ,k ′x‖2 .r C̃x 2− j .

Remark 2. If one does not choose r and α as in
the proofs above, but works with r large enough
and α small enough, a version of Theorem 2 with
‖x]−x‖2 . C̃x 2− j +max{

p
α,α}rad(S−S)+ (m/p)−r+1/2

holds for m, p as in the proof of Lemma 3.

Remark 3. When Σ∆ quantization is replaced by
distributed noise shaping, Theorem 2 holds with
j 224 j in the lower bound (2) replaced by j 24 j , and
Remark 2 holds with β−m/p replacing (m/p)−r+1/2.

V. NUMERICAL SIMULATIONS

To simulate Algorithm 1, we take K =S2 embed-
ded in R20 and construct a GMRA up to level jmax =
15 using 20,000 data points sampled uniformly
from K . We randomly select a test set of 100 points
x ∈ K for use throughout all experiments. In each
experiment (i.e., point in Figure 1), compressed
sensing measurements y = Φx = m−1/2 ADεx are
taken for each test point, with A ∼N (0, Im×N ) and
Dε a diagonal N × N matrix of random ±1s. We
recover x] from the r th order Σ∆ measurements
Q(y) via Algorithm 1 where, for practical reasons,
the alphabet from Theorem 2 is modified to be
A = {±1}. We vary λ= m/p for fixed r , p, and refine-
ment scale j . As in Remark 2, the reconstruction
error decays as a function of λ until reaching a
floor due to the refinement level of the GMRA.
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