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Abstract—In datasets where the number of parameters
is fixed and the number of samples is large, principal com-
ponent analysis (PCA) is a powerful dimension reduction
tool. However, in many contemporary datasets, when the
number of parameters is comparable to the sample size,
PCA can be misleading. A closely related problem is the
following: is it possible to recover a rank-one matrix in the
presence of a large amount of noise? In both situations,
there is a phase transition in the eigen-structure of the
matrix.
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I. INTRODUCTION

The problem of low-rank matrix recovery has received
a lot of attention in the signals processing community
over the last 10 years. The practical nature of this
problem has motivated many researchers to investigate
efficient methods to solve this optimization problem.
See, e.g., [6], [13], [10]. This list is by no means
exhaustive.

In this paper, we take a different direction. We are
interested in the following type of situation: Is it possible
to recover a rank-one matrix in the presence of a large
amount of noise? A useful data model to keep in mind is
the following: X = λxxT +G, where x ∈ Rn. The data
matrix X represents our observations, and the Gaussian
matrix G represents the noise structure. The challenge is
to recover the principal vector x and the value λ from
the data matrix X . We are especially interested in the
asymptotic behaviour of the largest eigenvalue and the
leading eigenvector of the data matrix X , (as n →∞),
when the operator norm of G is not negligible compared
to the operator norm of X . We observe a phase transition
phenomenon.

We are also interested in the behaviour of the leading
singular vector when the data matrix is a large rect-
angular matrix, where the number of rows is propor-
tional to the number of columns. Principal component
analysis (PCA) is a versatile tool in dimensionality
reduction. PCA projects the data onto the principal
subspace spanned by the leading eigenvectors of the
sample covariance matrix. In theory, these eigenvectors
can capture most of the variance in the data. This enables

the dimension of the feature space to be reduced, while
retaining most of the information. In the contemporary
setting, a collection of high-dimensional data can be
treated as a low-rank signal with additional noise struc-
ture. If the samples of data are organized into a data
matrix, then PCA can be used to recover the low-rank
signal. It performs well when the number of features, p,
is small, and the number of samples n is large. However,
in biomedical studies, the number of features p is often
comparable to the sample size n. In the biomedical
setting, the features are measurements on the expression
levels of thousands of genes, and n is the thousands of
individuals.

A. Setting and Motivation

Suppose we have a collection of independently
and identically distributed random vectors,
x1, x2, x3, . . . , xn from a p-dimensional real
Gaussian distribution with mean zero and covariance
Σ = diag(λ1, λ2, . . . , λM , 1, 1, . . . , 1), where
λ1 ≥ λ2 ≥ . . . ≥ λM > 1. Let X be the p × n
matrix with column vectors x1, x2, . . . , xn ∈ Rp.
Assume that 0 < c < 1 and p

n = c. Let S = 1
nXX

T

be the sample covariance matrix. A data scientist wants
to know how the largest eigenvalues of the matrix S
behave as n → ∞. Let us consider a specific scenario,
when p = 500 and n = 2000, is the sample largest
eigenvalue λ̂1 of the matrix S a good estimator of the
true eigenvalue λ1? That depends on the true value of
the largest eigenvalue λ1.

The following is a simplified version of a theorem of
Baik and Silverstein (see [4], [14]):

Theorem I.1. Let λ̂1 be the largest eigenvalue of S.
(1). Suppose λ1 ≤ 1 +

√
c and p

n → c as n→∞. Then,
we have

λ̂1 → (1 +
√
c)2 as n→∞.

(2). Suppose λ1 > 1 +
√
c and p

n → c as n→∞. Then,
we have

λ̂1 → λ1(1 +
c

λ1 − 1
) as n→∞.



What these authors observe is that there is a phase
transition in the eigen-structure of a matrix when both
the rows and columns are large, i.e. when p

n → c, 0 <
c < 1 and n → ∞. The phase transition phenomenon
can be quite complicated and this has been analyzed in
the seminal paper [3]. For other variations on this theme,
see, e.g. [15], [9], and [17].

Given a true signal in the form of an n-dimensional
unit vector x called the spike, we can define the spiked
Wigner model: observe Y = λxxT + 1√

n
W, where W

is an n×n random symmetric matrix with entries drawn
i.i.d. (up to symmetry) from a fixed distribution with
mean 0 and variance 1. The parameter λ represents the
signal-to-noise ratio (SNR). In the model, the detection
problem is the following statistical question: For what
values of the SNR is it possible to consistently test,
with probability 1− o(1) as n→∞, between a random
matrix drawn from the spiked distribution and one from
the un-spiked distribution? The detection problem has
been explored by many researchers, see, e.g. [8], [7],
[18], [12], [2], [1], [19]. For a recent development in
the spiked Wigner model, see [16].

In the data model, X = λx1x1
T + G, suppose we

have some additional information about the principal
vector x, how can we use that information to recover
the vector? We consider the case when each entry of the
vector is bounded between 0 and a fixed constant τ . To
be precise, we can take the specific value, τ = 0.2. Thus,
we know that the vector x1 lies in a box. The value of τ
does not affect the conclusion of the main theorem but it
may affect the speed of convergence of an optimization
algorithm used to recover the vector x1.

The leading eigenvector of the matrix X can be
computed using the Power Method or more sophisticated
variants (see [11]). Numerical experiments show that,
when λ = 4, the leading eigenvector v1 of the data
matrix X is not a good approximation to the desired
vector x1. In fact, the relative error between v1 and x1

often exceeds one hundred percent.
The purpose of this paper is to address both the

theoretical and practical aspect of this problem. On the
theory side, we observe a phase transition in the largest
eigenvalue. Moreover, the result shows that, depending
on the true value of λ1, the leading eigenvector of the
data matrix X can be nearly orthogonal to the true
vector x1. This means that some caution is warranted:
when n→∞, using principal component analysis as an
attempt to retrieve the vector x1 can give a misleading
result. In place of a proof to the theorem, we provide
an analytical explanation that gives the main insight to
the theorem.

On the practical side, we develop an iterative
algorithm to recover the vector x1 from the matrix X .

We view this as a box-constrained optimization problem
to find a vector x, where the unknown variable satisfies
the constraint, 0 ≤ ‖x‖∞ ≤ τ . Compared to the leading
eigenvector v1 of X , our algorithm yields a vector that
is significantly closer to the desired vector x1. But first,
we need to set some Notations:

• X is a symmetric random matrix, X ∈ Rn×n
• x1 is a fixed (non-random) vector, ‖x1‖2 = 1, and

x1 ∈ Rn
• G is a Gaussian symmetric matrix, G ∈ Rn×n and
G = GT , where G(i, j) are independent, normally
distributed with mean 0 and variance 1

n for i < j,
and G(i, i) is normally distributed with mean 0 and
variance 2

n

The following theorem is the phase transition phe-
nomenon (for symmetric matrices).

Theorem I.2. Let X = λx1x1
T + G, where G is

Gaussian symmetric matrix. Pick τ = 0.2.
Suppose x1 is a fixed vector of length 1, and 0 ≤
x1(j) ≤ τ , for 1 ≤ j ≤ n.
Let λ̂1 be the largest eigenvalue of the matrix X . Let
v1 be the leading eigenvector of the matrix X , i.e. v1

is the eigenvector that corresponds to λ̂1.
Then, if λ > 1, we have

lim
n→∞

|〈v1,x1〉| =
√
c,

where c = 1− 1
λ2 . Otherwise, if λ ≤ 1, we have

lim
n→∞

|〈v1,x1〉| = 0.

For the largest eigenvalue of the matrix X , the following
phase transition occurs. If λ ≥ 1, we have

λ̂1 → λ+
1

λ
(I.1)

as n → ∞. Otherwise, if λ ≤ 1, we have λ̂1 → 2 as
n→∞.

Note: After the initial preparation of an earlier version
of this manuscript, we learned that this is a version
of a theorem of Florent Benaych-Georges and Raj Rao
Nadakuditi, see [5]. We thank the authors of that paper
for bringing this to our attention. In their theorem [5],
they do not need the hypothesis that the entries of
the vector x1 are between 0 and τ . We include this
additional condition, since we can use it to improve
convergence in our numerical optimization algorithm.

II. BACKGROUND FOR MAIN THEOREM

The symmetric Gaussian random matrix in our first
result is an example of a Wigner matrix. We summarize
here some background and standard facts regarding the
Wigner Semicircular Law for symmetric random matri-
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ces. Given any probability measure µ on the real line,
the Stieltjes transform is defined by

Sµ(z) =

∫
R

dµ(t)

z − t
,

where z is any complex number in the upper half of the
complex plane. For any n×n symmetric matrix Mn, we
can work with the normalized matrix 1√

n
Mn and form

its empirical spectral distribution (ESD),

µ 1√
n
Mn

(x) =
1

n

n∑
j=1

δ

(
x− λj(Mn)√

n

)
of Mn, where λj(M) are the eigenvalues of Mn. The
ESD is a probability measure, also known as the spectral
measure for the matrix. For the square matrix Mn with
spectral measure µ(x) = µMn

(x), we can define its
corresponding Stieltjes transform. We have the following
useful identity,

Sn(z) = Sµ 1√
n

Mn
(z) =

1

n
Tr

[(
1√
n
Mn − zIn

)−1]
where Tr denotes the trace of a matrix, and In is the
n×n identity matrix. We define the semicircular distribu-
tion µsc(x) = 1

2π

√
4− x2. The Wigner semicircular law

states that the sequence of ESDs µ 1√
n
Mn

(x) converges
almost surely to µsc(x). The Stieltjes transform for the
spectral measure µsc is

Sµsc
(z) =

∫
R

dµsc(x)

x− z
=
−z +

√
z2 − 4

2
.

III. MAIN INSIGHT FOR MAIN THEOREM

We now give the analytical explanation for the
quantity λ + 1

λ that appears in equation (I.1) in the
phase transition phenomenon of Theorem I.2.

Recall that X = λx1x1
T + G, where G is Gaussian

symmetric matrix. Since G is symmetric, we can write
G = UTDU , where U is an orthogonal matrix and
D = diag(λ1, λ2, . . . , λn) is a diagonal matrix. Instead
of the matrix X , we can consider the matrix UXUT =
D+λUx1x1

TUT , i.e. a diagonal matrix D plus a rank
one positive definite matrix P ≡ λUx1x1

TUT . The
random orthogonal matrix U rotates the fixed vector
x of length one to a random vector u of length one.
The intuition is that when n is large, then with high
probability, the vector u is uniformly distributed on the
unit sphere {x ∈ Rn : ‖x‖2 = 1}. Hence, each entry
u(k) of the unit-length vector u is approximately equal
to the square root of 1/n. Fix z and suppose the matrix
(D − zIn) is invertible. Then, we have the relation,

det(zIn−(D+P )) = det(zIn−D)·det(In−(zIn−D)−1P ).
(III.1)

Consider the matrix M ≡ (zIn −D)−1P. Then, 1 is an
eigenvalue of the matrix M if and only if z is not an

eigenvalue of D and z is an eigenvalue of D+P . Since
the matrix M = (zIn − D)−1λuuT has rank one, we
know that the trace of M is equal to the only nonzero
eigenvalue of M . On the other hand, we have

Tr(M) = λ

n∑
k=1

|u(k)|2

z − λk
.

This implies that z is not an eigenvalue of D and z is
an eigenvalue of D + P if and only if

λ

n∑
k=1

|u(k)|2

z − λk
= 1. (III.2)

Here, u(k) are the entries of the vector u. The left
hand side of (III.2) is λSµn

(z), where µn represents
a weighted spectral measure associated to the diagonal
matrix D,

µn(x) =

n∑
k=1

|u(k)|2 · δ(x− λk).

Recall that when n is large, the square of each entry
u(k) of the vector u is about 1/n, with high probability.
Thus, we replace the previous relation (III.2) with

1

n

n∑
k=1

1

z − λk
=

1

λ
. (III.3)

But the left hand side of equation (III.3) converges to
the Stieltjes transform of the semicircular distribution,
so we conclude that

Sµsc(z) =
1

λ
.

Inverting the Stieltjes transform, we have z = S−1µsc

(
1
λ

)
.

By direct calculation, we can verify that

S−1µsc

(
1

λ

)
= λ+

1

λ
.

Finally, since z is an eigenvalue of D + P , we have
shown that λ+ 1

λ is indeed an eigenvalue of D+P . This
completes our analytical explanation for the appearance
of λ + 1

λ in the phase transition of eigenvalues for
symmetric matrices.

IV. OPTIMIZATION ALGORITHM

Our optimization algorithm is based on gradient de-
scent, but includes an additional projection to satisfy our
assumptions reduce the increased variance caused by the
additive Gaussian noise. We want to solve the following
optimization problem, where X is the observed, noise
corrupted matrix:

min
x

||X− xxT ||F + Tr(xxT )

s.t. 0 ≤ x(i) ≤ τ ∀i ∈ {1, 2, ..., N}
||x||2 = 1.

(IV.1)
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(Here, τ = 0.2 is a fixed parameter). As the additive
Gaussian noise increases the magnitude of the eigen-
values of the observed matrix X, we perform gradient
descent on an estimate of the true gradient (i.e. for
x1x

T
1 instead of X) by penalizing the magnitude of the

eigenvalues of our recovered matrix: that is, we penalize
the trace of xxT by adding as a penalty term the L2

norm of x. Our update equation is as follows:

xk+1 = xk − α[xT
k (xkx

T
k −X) + γ(xT

k xk)1T]T

(IV.2)
Above, α is the usual step size, which we experimentally
observe to work best when set in the range [10−3, 10−1],
with slightly better recovery results toward the lower end
of the range. The second parameter γ is the regulariza-
tion parameter for the L2 norm of x, which we set to
10−1 and do not change. Our gradient descent continues
until the following termination condition is met, which
is usually satisfied within roughly 50 iterations when
α = 0.1:

||xk+1 − xk||2
||xk+1||2

≤ 10−5. (IV.3)

We initialize x by generating a length N vector of
uniform random numbers in [0, τ ] and then dividing it
by its L2 norm.

This gradient descent procedure, however, does not
account for the main constraint in our optimization
problem: the box constraint. To satisfy this constraint,
after gradient descent reaches the termination condition
above, we apply a projection step that mitigates the effect
of the additional additive noise in the off-diagonal entries
of the observed matrix X. First, we divide x by its
L2 norm. Then, we project x onto the box [0, τ ]N by
setting each x(i) = min(max(x(i), 0), τ). We repeat this
alternating projection until the constraints are satisfied to
a precision of 10−5. As both the unit circle and the [0, τ ]
box are convex, this procedure is guaranteed to converge.

In our experiments, we initialize the true vector x1 by
setting a block of 2% of the entries to 1/

√
2(10−2)N

and dividing it by its L2 norm. We keep α = 10−1. The
observed data X is the rank-one matrix λx1x

T
1 , plus a

Gaussian random matrix G, as described in the previous
section, with λ = 4. We define the relative error as:

E(x) = 100 · ||x1 − x||2
||x1||2

(IV.4)

where x is our recovered vector. Regardless of our
selection of α in the range above, the standard deviations
of the relative error at each N are consistently below
2% for N ≥ 500. For sizes of x1 ranging from 500
to 5000, we observe that the average relative error for
the recovered vector using our optimization is substan-
tially lower in comparison to that of using the leading
eigenvector. Average relative error is computed over 200
trials (i.e. draws of G and optimization procedures) per
N . The results of our experiment are shown in Table I.

TABLE I
MEAN RELATIVE ERROR: “OPT” IS OUR OPTIMIZATION PROCEDURE

AND “EIG” IS THE TOP EIGENVECTOR PROCEDURE.

n Opt Mean(E) Eig Mean(E)

500 15.4% 113.5%

1000 14.1% 107.4%

2500 12.4% 123.9%

5000 10.3% 111.8%
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