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Abstract—We propose a new Iteratively Reweighted Least Squares
(IRLS) algorithm for the problem of completing a low-rank matrix
that is linearly structured, e.g., that possesses a Hankel, Toeplitz or
block-Hankel/Toeplitz structures, which is of relevance for the harmonic
retrieval or super-resolution problem. The algorithm optimizes a non-
convex surrogate of the rank by minimizing well-chosen quadratic upper
bounds of the smoothed surrogate.

We establish a quadratic local convergence rate of the developed IRLS
strategy if the linear structure is Hankel, with high probability if the
provided entries of the matrix are sampled uniformly at random, and if
the matrix to be completed fulfills a suitable coherence condition. Our
strategy combines computational efficiency, as the dimensionality of its
optimization variables scales sub-linearly in the matrix dimensions, with
a favorable data efficiency, as it can be observed in experiments on hard
completion tasks.

In particular, our experiments show that the proposed algorithm
exhibits an empirical recovery probability close to one from fewer
samples than existing state-of-the-art approaches for the Hankel matrix
completion task arising from the problem of spectral super-resolution of
frequencies with small separation.

I. INTRODUCTION

It is well known that a number of seemingly unrelated problems
as phase retrieval in x-ray crystallography and ptychography [1],
[2], blind deconvolution in wireless communications [3] and data
completion in recommender systems [4] can formulated as problems
of identifying and recovering a low-rank matrix from underdeter-
mined linear measurements or observations. One benefit of these
formulations is that it is possible to prove that certain tractable
algorithms solve the underlying problems [5]–[7] if an optimal or
near-optimal amount of samples is provided to the algorithms, and if
the provided samples are generic or random enough.

However, for some problems in parallel MRI [8], system identi-
fication [9], [10], direction of arrival [11] and the interpolation of
seismic data [12], the setup allows us to exploit an additional linear
structure of the low-rank matrices to be identified. In particular,
in these applications, it is possible to equip a low-rank matrix
recovery algorithm with prior knowledge about the solution such
that a low-dimensional linear subspace is provided in which the target
(approximately) low-rank matrix has to lie. By doing this, the number
of samples to ensure exact recovery can be further reduced [13].

To understand how linearly structured low-rank matrices arise in
the above domains, consider a one-dimensional discrete signal x P
Cn that is a superposition of r ! n exponentials, i. e.,

xt “
r
ÿ

k“1

αke2πifkpt´1q (1)

for t P t1, . . . , nu, where α1, . . . , αr P C are complex amplitudes
and f1, . . . , fr P r0, 1q are fixed frequencies. The problem of learning
the model parameters tαkurk“1 and tfkurk“1 from incomplete or
noisy samples of x is often also called super-resolution [14], harmonic

retrieval [15], line spectral estimation [16] or spectral compressed
sensing [17] and is a classical problem in signal processing. If we
now fix d1 such that r ď d1 ď n ´ r ` 1, define d2 “ n ´ d1 ` 1
and consider the linear Hankel operator H : Cn Ñ Cd1ˆd2 , x ÞÑ
Hpxq “ pHpxqqd1,d2

i,j“1 “ pxi`j´1q
d1,d2
i,j“1, it can be shown that the

Hankel matrix Hpxq associated to a spectrally sparse signal x as in
(1) has rank r [18], or to put it differently, X “ Hpxq is a matrix
that fulfills both rankpXq “ r and X P RanH.

In the case of missing or noisy samples in the vector x, this
double structure can be used to identify the model parameters of
(1) nevertheless.

Therefore, in this paper, we are interested in the following
structured low-rank matrix completion problem: Let m ă n,
Ω Ă t1, . . . , nu be an index set of cardinality |Ω| “ m, and
PΩ : Cn Ñ Cm, x ÞÑ PΩ “ pxtqtPΩ its subsampling operator, and
let PΩpxq be the partial samples of a discrete signal x. We consider

pZ “ Hppzq s.t. pz “ arg min
zPCn,PΩpzq“PΩpxq

rankpHpzqq, (2)

the task of finding a linearly structured matrix Hppzq of low rank that
is also compatible with the samples PΩpxq.

Related to this is the structured low-rank approximation problem

pz “ arg min
zPCn s.t.

rankpHpzqqďr

}Hpzq ´Hpxq}2F pwq, (3)

where } ¨ }F pwq is a suitable weighted Frobenius norm [9], [19] and
r ă minpd1, d2q is fixed.

Due to the interplay of linear subspace and non-convex low-rank
structures, finding efficient computational approaches to approxi-
mately or exactly solve (2) and (3) is challenging.

A classical approach to solve the problems is based on alternat-
ing projections [19], [20] (sometimes called Cadzow’s method), as
the projections onto the rank-r manifold and the linear subspace
parametrized by H can be efficiently calculated, but this approach
lacks provable algorithmic guarantees. A more recent approach based
on nuclear norm minimization (NNM) [8], [13] has been shown
to shown to solve the completion problem given a near-optimal
amount of samples, but this has its computational limitations as it is
equivalent to solving a semidefinite program (SDP) with an order of
at least n2 variables. Computationally more advantageous non-convex
optimization strategies such as iterative hard thresholding (IHT) [21]
and projected gradient descent (PGD) [22] have also been developed.
Despite this progress which also involves algorithmic guarantees, it
is hard to quantify which algorithmic approach provides an optimal
tradeoff between data efficiency, i. e., the ability to identify the model
for a number of samples m as small as possible, space complexity
and time complexity.



Computational challenges arise in particular for real-world en-
gineering instances of the problem, where n is very large and
a quadratic growth of dimensionalty from x to Hpxq can be a
computational issue, if H is the Hankel operator. Furthermore, for
multi-dimensional harmonic retrieval problems [8], [23], H can be a
block Hankel matrix operator whose size is non-trivial except of for
very small problem instances.

In this work, we develop a new Iteratively Reweighted Least
Squares (IRLS) algorithm tailored to the structured low-rank matrix
estimation problems (2) and (3), and provide a local convergence
analysis. This continues a line of work on algorithms of this kind for
the recovery of unstructured low-rank matrices [24]–[26].

II. OUR APPROACH

To derive optimization-based approaches for the problems (2) and
(3), the idea is to replace the non-convex and non-smooth rank
by a smooth, but still non-convex surrogate whose minimizers are
closely related to the minimizers of the rank. The first contribution
in this direction was done by [27], [28] and their idea was to
use log detpX ` εIdq as a smooth surrogate for rankpXq in the
case of positive semidefinite matrices, where ε is some suitable
regularization parameter. Inspired by this strategy, we propose a more
suitable logdet based objective J that can be used for general non-
square matrices and comes with computational advantages. For the
completion problem, which is the focus of this paper, it is defined as

J px, εq :“
R
ÿ

i“1

logpσipHpxqq2` ε2q`
minpd1,d2q

ÿ

i“R`1

logpε2q`
σ2
i pHpxqq
ε2

,

where R is an upper bound for the target rank r.
In the following, we propose an algorithm that can be seen as

a sequential minimization of local quadratic upper bounds on the
functional J px, εq under a data constraint. The precise formulation
of the proposed algorithm StrucHMIRLS can be found in Algorithm
1.

Algorithm 1: Structured Harmonic Mean
Iteratively Reweighted Least Squares

Input: Operators PΩ : Cn Ñ Cm and H : CÑ Cd1ˆd2 , data
vector y P Rm, rank parameter r, rank estimate R ą r

Output: Sequence pxpkqqkě1 Ă Cn.
Initialize ε0“σ1pHpP˚Ωpyqqq,W p0q

“ε20Id P Cnˆn.
for k “ 1, 2, . . . do

xpkq “ arg min
zPCn,PΩpzq“y

xz,W pk´1qzy`2 , (4)

TRpHpxpkqqq “ U
pkq
R diagpσpkqi qV

pkq˚
R , (5)

εk “ minpεk´1, σ
pkq
r`1q, (6)

W pkq
“H˚ĂW pkqH, (7)

where TR computes the the best rank-R approximation of
a matrix and ĂW pkq is defined as in (8).

In the algorithm, (4) corresponds to solving an nˆn linear system
coming from the linearly constrained least squares problem, and the
updates (6) and (7) of the smoothing parameter εk and the weight
matrix W pkq can be defined using only information from the best
rank-R approximation TRpHpxpkqqq of the current matrix of (5).
More precisely, for each iteration k, the action of ĂW on a matrix
X is given by

ĂW pkq
pXq “ U

pkq
R rHpkq ˝ pU

pkq˚
R XV

pkq
R qsV

pkq˚
R

` U
pkq
R Dpkq˚U

pkq˚
R XpId´ V

pkq
R V

pkq˚
R q

` pId´ U
pkq
R U

pkq˚
R qXV

pkq
R Dpkq˚V

pkq˚
R

` ε´2
k pId´ U

pkq
R U

pkq˚
R qXpId´ V

pkq
R V

pkq˚
R q,

(8)

where A˝B denotes the entrywise product of the matrices A and B,
U
pkq
R , V

pkq
R denote the matrices consisting of the R first left and right

singular vectors of Hpxpkqq, respectively, and where the matrices
Hpkq, Dpkq P CRˆR are given by

H
pkq
ij “ 2

”

σ2
i pHpxpkqqq ` σ2

j pHpxpkqqq ` 2ε2k

ı´1

, for i, j ď R,

Dpkq “ diag

˜

"

2
”

σ2
j pHpxpkqqq ` 2ε2kq

ı´1
*R

j“1

¸

.

For the design of the algorithm, it is crucial that the quadratic
upper bounds on J pxpkq, εkq are well-chosen, since the optimization
landscape of J is in general extremely non-convex. The precise shape
of these upper bounds is encoded in the weight matrix choice (7)
and (8), and our choice is inspired by the weight matrix rule of
[25], where a harmonic mean of certain previous weight matrices
rules [24], [26] was considered for the unstructured low-rank matrix
recovery problem to optimize a Schatten-p objective.

An important difference to the rule of [25] is that due to the low-
rank structure of (8), it is sufficient to work with partial SVD infor-
mation from a best rank-R approximation of the iteration matrices
Hpxpkqq.

We note that our algorithm has strong connections to Newton
methods modified to minimize non-convex functions [29], which can
be seen by relating ĂW to the Hessian of the objective J .

Furthermore, we note that while an IRLS algorithm for structured
low-rank matrix recovery has been already proposed in [30], the
algorithm of [30] does not optimize a rank surrogate of the Hankel
matrix Hpxq itself, but of a half-circulant extension thereof. This half-
circulant extension is not expected to be very low-rank even if Hpxq
is, which renders the connection to the original problem unclear.

III. COMPUTATIONAL ASPECTS

In practice, if H is, for example, a Hankel operator, the best rank-
R approximations of (5) can be computed very efficiently by using
that Hankel matrices are restricted circulant matrices, which allow
for the usage FFTs due to the diagonalization of circulant matrices
by the discrete Fourier transform.

The linear system of (4) can be solved by an iterative solvers as a
conjugate gradients method, since the corresponding system matrix is
positive definite. In the Hankel case, iterative solvers for (4) benefit
from fast matrix-vector multiplications of the system matrix. This
property is illustrated by the following lemma.

Lemma 1. If H : Cn Ñ Cd1ˆd2 is the Hankel operator, the
multiplication of W pkq

P Cnˆn with a vector v P Cn can be
computed in OpnR2

` nR lognq operations.

Thus, if a tight upper estimate R of the true rank r is provided and
r ! n, matrix-vector multiplication with W pkq is basically linear in
the dimensionality of x.

We note that the rule (6) for the smoothing parameter εk has the
disadvantage of necessitating the true model order r. Different rules
that also allow for a (more involved) theoretical analysis, but which
do not use the knowledge of r, are also possible [31], [32].



IV. THEORETICAL RESULTS

In the case that H is the Hankel operator, we establish in the
following a result about local convergence with quadratic rate of
StrucHMIRLS starting from an iterate Hpxpk˚qq that is close
enough to a low-rank Hankel matrix X0 “ Hpx0q.

We say that a rank-r matrix X with singular value decomposition
X “ UΣV ˚ is µ0-incoherent if

max
1ďiďd1

}U˚ei}2 ď

c

µ0r

d1
, max

1ďjďd2

}V ˚ej}2 ď

c

µ0r

d2
, (9)

where ei denotes the vector that is different from zero only at the
i-th entry.

Theorem 1. Let x0 P Cn be vector such that Hpx0q P Cd1ˆd2 is a
rank-r matrix that is µ0-incoherent. Let Ω Ă t1, . . . , nu be a collection
of m indices sampled i.i.d. uniformly with replacement. Assume n ě 9

and that
›

›Hpxpk˚qq ´Hpx0q
›

› ď ζσrpHpx0qq

for some ζ ă min

ˆ

1
2
, 1

21

b

m
4n log2pnq

˙

. Then, if

m ě 128βµ0r logpnq, (10)

there is a constant cpn, r, κq such that with probability at least 1´n´2´

d2´2β
2 ,

›

›Hpxpk`1qq ´Hpx0q
›

› ď
cpn, r, κq

σrpHpx0qq

›

›Hpxpkqq ´Hpx0q
›

›

2
, @k ě k˚.

Here, κ “ σ1pHpx0qq{σrpHpx0qq is the condition number of Hpx0q and
cpn, r, κq “ 4p 16

9
n2 ` 1qrp3` 4κq.

It is instructive to compare the sufficient condition for the sample
complexity (10) with corresponding conditions for local convergence
results for PGD [22] and IHT [21], which require Ωpµ2

0κ
2r2 logpnqq

and Ωpµ0κ
6r2 logpnqq samples respectively. We note that a global

convergence theory for NNM [13] is available if Ωpµ0r log4
pnqq

samples are provided.
Moreover, it is important to highlight the contribution of this

result. As noted in [25], certain sufficient conditions for low-rank
matrix recovery, such as restricted isometry properties or null space
properties, do not hold for the matrix completion case. Thus, with
Theorem 1, we solve an open question about local convergence of
IRLS strategies for entrywise measurements, inspired by [21], [33],
[34], for incoherent matrices. While this is not the focus of the current
paper, we note that it is possible to generalize our analysis of local
convergence to appropriate IRLS algorithms for unstructured low-
rank matrix completion problems, as the linear (Hankel) structure
does not play a prominent role in our arguments.

V. PROOF OF CONVERGENCE

In order to establish Theorem 1, we first state a lemma about the
spectral norm } ¨ } of the sampling operator PΩ.

Lemma 2 ( [33, Proposition 5]). With probability at least 1´n2´2β ,
the maximum number of repetitions of any entry in Ω is less than
8
3
β logpnq for n ě 9 and β ą 1. Consequently, with high probability

we have }PΩ} ď
8
3
β logpnq.

In order to study the convergence of the proposed algorithm, some
notation regarding Hankel matrices must be established. The adjoint
of H is denoted by H˚ : Cd1ˆd2 Ñ Cn and its action is given by
H˚pXq “ t

ř

i`j“aXiju
n´1
a“0 . We will define the operator D2

“

H˚H and G “ HD´1. Then the adjoint of G is given by G˚ “
D´1H˚.

Besides that, the tangent space T of the embedded rank r matrix
manifold at the point Hpxq is defined as

T :“ tUA˚ `BV ˚ : A P Cd2ˆr, B P Cd1ˆru. (11)

The orthogonal projections onto the subspaces spanned by U , V
and T as well as the its orthogonal complement of the later will be
respectively denoted by PU , PV , PT and PTK , respectively.

Lemma 3 ( [13, Lemma 3]). Let U P Cd1ˆr and V P Cd2ˆr be
two µ0-incoherent orthogonal matrices. Let T be the tangent space
defined in (11) and define p´1

“ n{m and cs “ max
!

n
d1
, n
d2

)

.
Then

}PTGG˚PT ´ p´1PTGPΩG˚PT } ď
c

32µcsr logpnq

m
(12)

holds with probability at least 1´ n´2 provided that

m ě 128µcsr logpnq.

Lemma 3 can be seen as a restricted isometry property (RIP) on
the tangent space (see [5, Section 4.2] for some discussion). As a
consequence of it, it is possible to establish a crucial inequality that
controls the projection onto the tangent space.

Lemma 4. Let x P Cn and T be the tangent space of the embedded
rank r matrix manifold at the point Hpxq. Assume that (12) holds.
Then, for any Hpxq “ DGx, it holds that

}PTHpxq}F ă 3n }PTKHpxq}F @x P kerpPΩq.

Inspired by the Riemannian optimization algorithms for low-rank
matrix completion [34], [35], the key ingredient for the proof is a per-
turbation argument on the tangent space, showing that if two matrices
are sufficiently close, then we can transfer the properties showed in
the Lemmas 3 and 4 from the matrix of the previous iteration to the
matrix of the next iteration of the algorithm. More precisely, let xpkq

be the current iterate of the algorithm, TrpHpxpkqqq “ U
pkq
r ΣkV

pkq˚
r

and Tk be the tangent space of the r-rank matrix manifold at Hpxpkqq,
that is, Tk “ tU

pkq
r A˚ `BV

pkq˚
r : A P Cd2ˆr, B P Cd1ˆru.

Lemma 5 ( [21, Lemma 8]). Assume that 0 ă ε0 ă 1{10 and that
the following three conditions hold:
‚ }PΩ} ď

8
3

logpnq,
‚ }PTGG˚PT ´ p´1PTGPΩG˚PT } ď ε0

‚
}Hpxlq´Hpx0q}F
σminpHpx0qq

ď 1
21

b

m
4n log2pnq

.

Then we have
}PTlGG

˚PTl ´ p
´1PTlGPΩG˚PTl} ď 4ε0,

}PTlHpxq}F ă
4n

3

›

›PTl
KHpxq

›

›

F
@x P kerpPΩq. (13)

We can finally sketch the proof of our main result:

Proof of Theorem 1. Let ηpkq “ Hpxpkq´x0q for k P N. Define Tk
as the space tangent of the manifold of rank-r matrices at Hpxpkqq.
Using Lemma 5 for Tk, it follows that
›

›

›
ηpk`1q

›

›

›

2

ď

›

›

›
ηpk`1q

›

›

›

2

F
“

›

›

›
PTkη

pk`1q
›

›

›

2

F
`

›

›

›
PTK

k
ηpk`1q

›

›

›

2

F

ď

ˆ

16n2

9
` 1

˙

›

›

›
PTK

k
ηpk`1q

›

›

›

2

F
.

(14)

Using the calculations of [25, Lemma 20], we obtain that
›

›

›
PTK

k
ηpk`1q

›

›

›

2

F
“

`

σ2
r`1pHpxpkqqq ` ε2k

˘

›

›

›
η
pk`1q

TK
k

›

›

›

2

F pW pkqq

ď
`

σ2
r`1pHpxpkqqq ` ε2k

˘

›

›

›
ηpk`1q

›

›

›

2

F pW pkqq
,

(15)



where }X}F pĂW pkqq
:“

b

Tr
`

X˚ĂW pkqpXq
˘

is the weighted Frobe-

nius norm of a matrix X with respect to ĂW pkq
pXq, defined as in (8).

Noting that xpk`1q is the solution of the constrained least-squares
problem with weight operator W pkq, as described in (7), we see that
(cf. [25, Lemma 16])

0 “ xĂW pkqHpxpk`1q
q, ηpk`1q

y “ xĂW pkq
pηpk`1q

`Hpx0qq, η
pk`1q

y,

which is equivalent to
›

›

›
ηpk`1q

›

›

›

2

F pW pkqq
“ xĂW pkqηpk`1q, ηpk`1q

y

“ ´xĂW pkq
pHpx0qq, η

pk`1q
y ď

›

›ĂW pkq
pHpx0qq

›

›

S1

›

›ηpk`1q
›

›

(16)

Here } ¨ }S1 denotes the Schatten-1 (or nuclear) norm. Using the
notation X0 “ Hpx0q, we proceed as in the proof of [25, Lemma
21], and we estimate

›

›ĂW pkq
pX0q

›

›

S1
ď

›

›

›
U pkqr rpHpkqqri,j“1 ˝ pU

pkq˚
r X0V

pkq
r qsV pkq˚r

›

›

›

S1

`2σrpkq
´2

›

›

›
U pkq˚r X0pId´ V

pkq
r V pkq˚r q

›

›

›

S1

`2σrpkq
´2

›

›

›
pId´ U pkqr U pkq˚r qX0V

pkq
r

›

›

›

S1

`ε´2
k

›

›

›
pId´ U pkqr U pkq˚r qX0pId´ V

pkq
r V pkq˚r q

›

›

›

S1

ď
r

σrpX0qp1´ ζq2

„

1` 4ζ ` 2κ
}ηpkq}2

ε2k



.

(17)

We now proceed iteratively. Using that ζ ă 1{2 and combining
inequalities (14), (15), (16) and (17), we obtain

›

›

›
ηpk`1q

›

›

›
ď

4
`

16n2
` 9q

`

σ2
r`1pHpxpkqqq ` ε2k

˘

r

9σrpX0q

„

3`
2κ}ηpkq}2

ε2k



“
4p16n2

` 9qr

9σrpX0q

”

3
`

σ2
r`1pHpxpkqq ` ε2k

˘

` 4κ}ηpkq}2
ı

ď
4p16n2

` 9qr

9σrpX0q
r3` 4κs }ηpkq}2, (18)

where we used in the last line that σr`1pHpxpnqqq “ }Hpxpkqq ´
TrpHpxpkqqq} ď }Hpxpkqq ´ X0} “ }ηpkq} and εk ď

σr`1pHpxpkqqq, which holds due to its definition. Finally, we have
established the local quadratic convergence with constant cpn, r, kq “
4p 16

9
n2
` 1qrp3` 4κq.

VI. NUMERICAL RESULTS

In a first experiment, we consider the completion of Hankel matri-
ces Hpxq from m sample coordinates T of x “ pxp0q, . . . , xpn´1qq
that are drawn uniformly at random, n “ 127 and xptq “
řr
k“1 αke

p2πifkqt, where the fk and ck are sampled independently
such that fk „ Upr0, 1sq, |αk| “ 1`10ck , ck „ Upr0, 1sq, as in [22].
In Figure 1, the empirical recovery probabilities averaged over 50
simulations for each pair of m and r are documented in comparison
with those of algorithms [13], [21], [22], [36], [37]. We observe
that StrucHMIRLS exhibits the best performance, with successful
recovery already when m « 2r, despite the fact that some frequencies
fk will be very close if r is not too small, which compromises the
performance of, e.g., atomic norm minimization [38], [39].

Furthermore, we use a denoising variant of StrucHMIRLS tai-
lored to the problem (3) in a second experiment, in order to investigate
its performance for frequency estimation under the presence of

Fig. 1: Hankel matrix completion, m measurements of vector x P Cn
with n “ 123. x-axis: number of measurements m, y-axis: model
order r.

additive Gaussian noise on equispaced samples from a signal that
is a sum of two frequencies located at f1 “ 0.35 and f2 “ 0.40
(both with unitary amplitude), following Section VI of [40].
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Fig. 2: Frequency estimation experiment, r “ 2, α1 “ α2 “ 1 and
f1 “ 0.35 and f2 “ 0.40.

After denoising, we use ESPRIT to obtain the frequencies, which
is arguably one of best algorithms for frequency estimation for low
noise levels [41]. As a comparison, we use the algorithms [19], [20],
[40] (combined with ESPRIT for frequency retrieval, respectively),
vanilla-ESPRIT [42] and Prony’s method. For our method, we choose
the regularization parameter λ according to an adaptive rule that uses
the information of the model order r “ 2.

The results corresponding to an average over 500 independent noise
realizations for each SNR value can be seen in Figure 2, and our
method consistently obtains a lower MSE on the vector of frequencies
f “ pf1, f2q than the competing methods across different noise
SNRs.

VII. CONCLUSION

In this paper, we formulate an IRLS algorithm suited for struc-
tured low-rank matrix recovery problems. We exhibited beneficial
computational properties and also theoretical guarantees for local
convergence. The numerical experiments suggest a very competitive
statistical accuracy compared to other state-of-the-art methods for
the completion problem. They also indicate that the algorithm can be
used as a preprocessing step in harmonic retrieval problems. Further
developments are the establishment of a global convergence theory



and extensive experiments with large real data such as those from
model order reduction in control theory.
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