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Abstract—Equi-chordal tight fusion frames (ECTFFs) and
equi-isoclinic tight fusion frames (EITFFs) are types of optimal
packings in Grassmannian spaces. In particular, an ECTFF is an
arrangement of equi-dimensional subspaces of a Euclidean space
with the property that the smallest chordal distance between any
pair of these subspaces is as large as possible. An EITFF is a
special type of ECTFF that also happens to be an optimal packing
with respect to the spectral distance. In the special case where the
subspaces are one-dimensional, both ECTFFs and EITFFs reduce
to optimal packings of lines known as equiangular tight frames
(ETFs); these lines have minimal coherence, achieving equality
in the Welch bound. ETFs are tricky to construct, but several
infinite families of them are known. Harmonic ETFs in particular
arise by restricting the characters of a finite abelian group to a
difference set for that group. Moreover, there is a simple tensor-
based method for combining ETFs with orthonormal bases to
form EITFFs. It is an open question as to whether every EITFF
essentially arises in this way.

In this short paper, we preview a new result relating difference
sets, harmonic ETFs, ECTFFs and EITFFs. This work expands
on other recent results showing that certain harmonic ETFs are
comprised of a number of simpler ETFs known as regular sim-
plices; such ETFs arise, for example, from McFarland difference
sets as well as the complements of certain Singer difference
sets. It is already known that in this situation the subspaces
spanned by these regular simplices necessarily form an ECTFF.
We recently discovered that these same subspaces form an EITFF
in some, but not all, cases. In an upcoming journal article, we
shall characterize the properties of the underlying difference sets
that lead to EITFFs in this fashion.

I. EQUI-ISOCLINIC TIGHT FUSION FRAMES

Let F be either R or C, and let H be a D-dimensional
Hilbert space over F whose inner product is conjugate-linear
in its first argument. Letting N be an N -element indexing set,
a sequence {Un}n∈N of M -dimensional subspaces of H is a
tight fusion frame (TFF) for H if their orthogonal projection
operators {Pn}n∈N satisfy

∑
n∈N Pn = CI for some C > 0.

TFFs are thus those sequences {Un}n∈N of M -dimensional
subspaces of H that achieve equality in the following appli-
cation of the Cauchy-Schwarz inequality with respect to the
Frobenius inner product 〈A,B〉Fro := Tr(A∗B):

MN =
〈
I,
∑
n∈N

Pn

〉
Fro
≤
√
D
∥∥∥∑
n∈N

Pn

∥∥∥
Fro
.

Squaring this bound and simplifying the right-hand side gives
MN(MN−D)

D ≤
∑
n∈N

∑
n′ 6=n

〈Pn,Pn′〉Fro (1)

≤ N(N − 1)max
n 6=n′
〈Pn,Pn′〉Fro, (2)

where (1) holds with equality if and only if {Un}n∈N is a
TFF, while (2) holds with equality if and only if 〈Pn,Pn′〉Fro
is constant over all n 6= n′. When this second property holds,
we say {Un}n∈N is equi-chordal since

dist2c(Un,Un′) = 1
2‖Pn −Pn′‖2Fro =M−〈Pn,Pn′〉Fro (3)

is the (squared) chordal distance between Un and Un′ . Overall,
for any N subspaces {Un}n∈N of a D-dimensional Hilbert
space, each of dimension M , we have

M(MN−D)
D(N−1) ≤ max

n 6=n′
〈Pn,Pn′〉Fro, (4)

where equality holds if and only if {Un}n∈N is an equi-
chordal tight fusion frame (ECTFF) for H. Rewriting this
inequality in terms of (3) gives an equivalent upper bound
on maxn 6=n′ distc(Un,Un′), namely Conway, Hardin and
Sloane’s simplex bound [1]. By achieving this bound, ECTFFs
are optimal packings of N points—with respect to the chordal
distance—in the Grassmannian space that consists of M -
dimensional subspaces of H.

To proceed, it helps to introduce some operator notation.
For any finite indexing set N , let FN := {x : N → F}. The
synthesis operator of any sequence of vectors {an}n∈N in
H is A : FN → H, Ax :=

∑
n∈N x(n)an. Its adjoint is

the corresponding analysis operator A∗ : H→ FN , which is
given by (A∗y)(n) = 〈an,y〉. Composing these operators
gives A∗A : FN → FN , which is naturally regarded as
an (N × N )-indexed Gram matrix whose (n, n′)th entry
is (A∗A)(n, n′) = 〈an,an′〉, as well as the corresponding
frame operator AA∗ : H → H, AA∗y =

∑
n∈N 〈an,y〉an.

Regarding any single vector an as a trivial synthesis operator
defined by an(x) := xan for any x ∈ F, its adjoint is the
linear functional a∗n : H → F, a∗ny = 〈an,y〉. Under this
notation, AA∗ =

∑
n∈N ana∗n.

If {Un}n∈N is any sequence of M -dimensional subspaces
of H, then letting M be some M -element indexing set, we,
for each n, can let {en,m}m∈M be an orthonormal basis for
Un, let En be its corresponding synthesis operator, and write
the orthogonal projection operator onto Un as Pn = EnE∗n.
As such,

〈Pn,Pn′〉Fro = Tr(EnE∗nEn′E
∗
n′) = ‖E∗nEn′‖2Fro. (5)

Here, E∗nEn′ is an M × M cross-Gram matrix whose
(m,m′)th entry is 〈en,m, en′,m′〉. Though these cross-
Gram matrices are bases dependent, their singular values



{σn,n′,m}Mm=1 are not, and lie in the interval [0, 1]: let-
ting ‖A‖2 denote the induced 2-norm of an operator A,
and writing singular values in decreasing order, we have
σn,n′,1 = ‖E∗nEn′‖2 ≤ ‖En‖2‖En′‖2 = 1. Thus, there
is an increasing sequence of angles {θn,n′,m}Mm=1 in [0, π2 ]
such that σn,n′,m = cos(θm) for all n, n′ ∈ N , m =
1, . . . ,M ; these are known as the principal angles between
Un and Un′ . In particular, combining this with (3) and (5)
gives distc2(Un,Un′) =

∑M
m=1 sin

2(θn,n′,m). In contrast, the
(squared) spectral distance [3] between Un and Un′ is:

dist2s (Un,Un′) = sin2(θn,n′,1) = 1− ‖E∗nEn′‖22. (6)

To obtain a pairwise spectral distance bound that is analogous
to the simplex bound, note ‖E∗nEn′‖2Fro ≤ M‖E∗nEn′‖22,
where equality holds if and only if the principal angles
{θn,n′,m}Mm=1 are constant over m; when this occurs, Un and
Un′ are said to be isoclinic. This happens if and only if there
exists some σn,n′ ≥ 0 such that E∗nEn′E

∗
n′En = σ2

n,n′I, or
equivalently, PnPn′Pn = σ2

n,n′Pn.
Combining these facts with (4) and (5) then gives[

MN−D
D(N−1)

] 1
2 ≤ max

n 6=n′
‖E∗nEn′‖2 (7)

where equality holds if and only if {Un}n∈N is an equi-
isoclinic tight fusion frame (EITFF) for H, namely an ECTFF
where any pair of subspaces are isoclinic. That is, {Un}n∈N
achieves equality in (7) if and only if {Un}n∈N is a TFF
whose principal angles θn,n′,m are constant over all n 6= n′

and m, or equivalently, when there exists σ ≥ 0 such that
PnPn′Pn = σ2Pn for all n 6= n′. By rewriting (7) in
terms of (6), we see that EITFFs are optimal packings in
Grassmannian space with respect to the spectral distance.

In the special case where {Un}n∈N is any sequence of
subspaces of H of dimension M = 1, any unit norm vector
ϕn in Un is an orthonormal basis for it, giving En = ϕn
and Pn = ϕnϕ

∗
n. Here, {Un}n∈N is a TFF if and only

if CI =
∑
n∈N Pn =

∑
n∈N ϕnϕ

∗
n = ΦΦ∗ for some

C > 0, namely if and only if {ϕn}n∈N is a tight frame
for H. Moreover, for any n 6= n′, the cross-Gram matrix
E∗nEn′ of Un and Un′ is simply the scalar 〈ϕn,ϕn′〉, giving
〈Pn,Pn′〉Fro = ‖E∗nEn′‖2Fro = |〈ϕn,ϕn′〉|2 = ‖E∗nEn′‖22.
Thus, when M = 1, {Un}n∈N is equi-chordal precisely when
it is equi-isoclinic, and this occurs if and only if {ϕn}n∈N
is equiangular, namely when |〈ϕn,ϕn′〉| is constant over all
n 6= n′. Moreover, when M = 1, both (4) and (7) reduce to
the Welch bound [13]: for any unit norm vectors {ϕn}n∈N ,[

N−D
D(N−1)

] 1
2 ≤ max

n 6=n′
|〈ϕn,ϕn′〉|, (8)

where equality is achieved if and only if {ϕn}n∈N is a tight
frame for H that is also equiangular, namely an equiangular
tight frame (ETF) for H.

ECTFFs, EITFFs and ETFs are tricky to construct from
scratch. That said, a number of infinite families of ETFs are
now known [6]. Moreover, every ETF leads to an infinite
family of EITFFs in a trivial way. To elaborate, let {ϕn}n∈N

be an ETF for a D-dimensional Hilbert space H. For any M ,
let {um}m∈M be an orthonormal basis for an M -dimensional
Hilbert space K, meaning its synthesis operator U is unitary.
For each n ∈ N , define en,m := ϕn ⊗ um ∈ H ⊗ K for
all m ∈ M, and so the synthesis operator of {en,m}m∈M
is En = ϕn ⊗ U. Since {ϕn}n∈N is a tight frame,
Un := span{en,m}m∈M = range(En) is a TFF: since
Pn = EnE∗n = ϕnϕ

∗
n ⊗ UU∗ = ϕnϕ

∗
n ⊗ I for all n,∑

n∈N Pn = (
∑
n∈N ϕnϕ

∗
n) ⊗ I = C(I ⊗ I) for some

C > 0. Moreover, the corresponding cross-Gram matrices are
E∗nEn′ = ϕ∗nϕn′ ⊗ U∗U = 〈ϕn,ϕn′〉 ⊗ I. In particular,
for every n we have E∗nEn = I and so {en,m}m∈M is an
orthonormal basis for Un. Moreover, for any n 6= n′, every
singular value of E∗nEn′ is equal to |〈ϕn,ϕn′〉| = [ N−D

D(N−1) ]
1
2 .

As such, {Un}n∈N is an EITFF for the MD-dimensional
space H ⊗ K that consists of N subspaces of dimension M .
Though not every known EITFF is quite this simple, the D,
M and N parameters of every known EITFF can be obtained
from the parameters of a known ETF in this way. This leads
to the following conjecture [5]:

Conjecture 1: If there exists an EITFF for a D-dimensional
Hilbert space that consists of N subspaces of dimension M ,
then M divides D and there exists an N -vector ETF for a
Hilbert space of dimension D

M .
In a recent paper [4], a new method to produce ECTFFs

from certain ETFs was discovered. In an upcoming journal
article [8], we show that in some cases, these ECTFFs are ac-
tually EITFFs. Though these results neither prove nor disprove
the above conjecture in general, they do prove that it at least
holds in a special case. In the remainder of this document, we
outline this result.

II. HARMONIC ETFS AND DIFFERENCE SETS

A character on a finite abelian group G is a homomorphism
γ : G → T = {z ∈ C : |z| = 1}. The (Pontryagin) dual
of G is the set Ĝ of all characters of G, which is itself a
group under pointwise multiplication. It is well known that
Ĝ is isomorphic to G, and that {γ}γ∈Ĝ is an equal-norm
orthogonal basis for CG . As such, the synthesis operator of
{γ}γ∈Ĝ , namely the (G×Ĝ)-indexed character table F defined
by F(g, γ) := γ(g), has the property that F−1 = 1

GF∗, where
G is the order of G. Here, the corresponding analysis operator
is the discrete Fourier transform (DFT) over G defined by
(F∗y)(γ) := 〈γ,y〉 for any y ∈ CG and γ ∈ Ĝ.

Since FF∗ = GI, the rows of F are equal-norm orthogonal.
Of course, any subset of these rows also has this property: if
D is any nonempty D-element subset of G, then letting Φ be
the (D×Ĝ)-index submatrix defined by Φ(d, γ) = D−

1
2 γ(d),

we have ΦΦ∗ = G
D I. Regarding the γ-indexed column of Φ

as the vector ϕγ = D−
1
2 γ ∈ CD, we equivalently have that

{ϕγ}γ∈Ĝ is a tight frame for CD. Such tight frames are dubbed
harmonic frames, and have a circulant Gram matrix with
〈ϕγ ,ϕγ′〉 = 1

D

∑
d∈D(γ

−1γ′)(d) = 1
D (F∗χD)(γ(γ

′)−1)
where χD is the characteristic function of D. In particular,
a harmonic frame is an ETF if and only if |(F∗χD)(γ)|2
is constant over all γ 6= 1. To continue, we exploit the fact



that the convolution (y1 ∗ y2)(g) :=
∑
g′∈G y1(g

′)y2(g − g′)
of y1 and y2 satisfies F∗(y1 ∗ y2) = (F∗y1)(F

∗y2), while
the involution ỹ(g) := y(−g) satisfies F∗ỹ = F∗y. As
such, |F∗χD|2 = F∗(χD ∗ χ̃D) where χD ∗ χ̃D is the
autocorrelation of χD, given by:

(χD ∗ χ̃D)(g) =
∑
g′∈D

χD(g
′)χD(g

′ − g)

= #[D ∩ (g +D)]

= #{(d, d′) ∈ D ×D : g = d− d′}. (9)

We also observe (F∗y)(γ) is constant over all γ 6= 1 if and
only if y(g) is constant over all g 6= 0. Altogether, these
facts imply the following result, a fact observed in [12], and
later rediscovered in the context of ETFs [11], [14], [2]: the
harmonic frame arising from a subset D of G is an ETF if and
only if D is a difference set of G, namely if and only if the
number (χD ∗ χ̃D)(g) of ways a given g ∈ G can be written
as a difference of members of D is constant over all g 6= 0.

For a simple example of a difference set, for any finite
abelian group G, the set D = G\{0} is a difference set
for G, and yields a harmonic ETF for a space of dimension
D = G − 1 that consists of N = G vectors; in general, any
ETF with N = D+1 is known as a regular D-simplex. More
sophisticated constructions lead to harmonic ETFs with a wide
variety of (D,N) parameters, including Singer and McFarland
difference sets, both of which arise from hyperplanes in vector
spaces over finite fields [10].

To elaborate, for any prime power Q and any integer J ≥ 2,
the finite field FQJ of order QJ is a J-dimensional vector
space over its subfield FQ. The field trace tr : FQJ → FQ,
tr(β) :=

∑J−1
j=0 β

Qj

is a nontrivial linear functional, and so
its kernel U := {β ∈ FQJ : tr(β) = 0} is a hyperplane, that
is, has codimension 1. In fact, every linear functional on FQJ

is of the form β 7→ tr(γβ) for some γ 6= 0; this follows from
the decomposition β =

∑J
j=1 tr(γjβ)δj , where {γj}Jj=1 and

{δj}Jj=1 are bases for FQJ that are biorthogonal with respect
to the “dot product” γ ·δ := tr(γδ). As such, every hyperplane
in FQJ is of the form γU = {β ∈ FQJ : tr(γ−1β) = 0} for
some γ 6= 0. Moreover, since γU = U if and only if γ lies in
the multiplicative group F×Q of FQ, and since any two distinct
hyperplanes intersect in a subspace of codimension 2,

#[U ∩ (γU)] =
{
QJ−1, γ ∈ F×Q,
QJ−2, γ ∈ F×

QJ\F×Q.
(10)

Comparing against (9), we see that the hyperplane U is almost,
but not quite, a difference set. To finalize the construction, we
projectivize: any nonzero β in FQJ is contained in a unique
1-dimensional subspace of FQ, as indicated by the quotient
map from F×

QJ → F×
QJ/F×Q, β 7→ β := βF×Q. In particular,

projectivizing U yields

D = {β ∈ F×
QJ/F×Q : tr(β) = 0}. (11)

Since projectivizing identifies any nonzero β ∈ FQJ with Q−2
other such vectors, (10) becomes

#[D ∩ (γD)] = 1
Q−1

{
QJ−1 − 1, γ = 1,
QJ−2 − 1, γ 6= 1,

and so D is a difference set for G = F×
QJ/F×Q. To make this

construction more explicit, recall that the multiplicative group
of any finite field is cyclic. In particular, F×

QJ = 〈α〉 ∼= ZQJ−1
where α is the root of a primitive polynomial over FQ of
degree J . Here, F×Q is isomorphic to the subgroup of ZQJ−1
of order Q−1. As such, abusing notation, we may equivalently
regard our difference set D and group G as

D = {k = 0, . . . Q
J−1
Q−1 − 1 : tr(αk) = 0}, G = ZQJ−1

Q−1

.

Such D are known as Singer difference sets, and yield har-
monic ETFs consisting of G = QJ−1

Q−1 vectors in a space of
dimension D = QJ−1−1

Q−1 .

III. ETFS COMPRISED OF REGULAR SIMPLICES

If {ϕn}n∈N is an N -vector ETF for a D-dimensional space
H, a subsequence of these vectors is still equiangular, and,
in rare cases, can itself form an ETF for a subspace of H.
In fact, some ETFs have the remarkable property that their
vectors can be partitioned into subsequences that are regular
S-simplices for their spans; when this occurs, we say the
ETF is comprised of regular simplices. Here, since the Welch
bound (8) of {ϕn}n∈N equals that of a simplex it contains,[

N−D
D(N−1)

] 1
2 =

{ (S+1)−S
S[(S+1)−1]

} 1
2 = 1

S , (12)

and so S is necessarily the reciprocal of the Welch bound (8).
For example, a Steiner ETF is formed by using a balanced

incomplete block design to embed S-simplices into subspaces
of H in a way that permits the entire ensemble to be equian-
gular [7]; such ETFs are thus comprised of regular simplices
by design. Moreover, harmonic ETFs arising from McFarland
difference sets are unitarily equivalent to a special class of
Steiner ETFs [9], and so also have this property. Recently, it
has been shown that certain other harmonic ETFs—ones that
are provably not unitarily equivalent to any Steiner ETF—
are nevertheless comprised of regular simplices [4]. Here, the
main idea is to exploit the Poisson summation formula: if H is
any H-element subgroup of G, then F∗χH = HχH⊥ where
H⊥ := {γ ∈ Ĝ : γ(h) = 1, ∀h ∈ H} is the annihilator of H.
It is well known that H⊥ is itself a subgroup of Ĝ of order
G
H , and in fact is isomorphic to the dual of G/H.

To elaborate, for any subgroup H of G that is disjoint
from a difference set D, the corresponding harmonic ETF
{ϕγ}γ∈Ĝ can be partitioned according to the cosets of H⊥,
where vectors from any coset sum to zero: for any γ ∈ Ĝ,∑

γ′∈γH⊥
ϕγ′(d) =

γ(d)√
D
(FχH⊥)(d) =

G
H
√
D
χH(d) = 0.

In particular, if D is disjoint from a subgroup H of order
H = G

S+1 where S satisfies (12) with N = G, then every
coset-indexed subsequence {ϕγ′}γ′∈γH⊥ of {ϕγ}γ∈Ĝ is a reg-
ular simplex for its span Uγ , being a sequence of S+1 vectors
that lie in an S-dimensional subspace of H, while achieving the
corresponding Welch bound. In [4], it is further observed that
the subspaces {Uγ : γ ∈ Ĝ/H⊥} necessarily form an ECTFF
for CD: for any γ ∈ Ĝ, the orthogonal projection operator onto



Uγ is Pγ = S
S+1ΦγΦ

∗
γ where Φγ is the synthesis operator for

{ϕγ′}γ′∈γH⊥ , and so
∑
γ∈Ĝ/H⊥ Pγ = S

S+1ΦΦ∗ = GS
D(S+1)I;

moreover, for any γ, γ′ ∈ Ĝ such that γH⊥ 6= γ′H⊥,

〈Pγ ,Pγ′〉 = S2

(S+1)2 ‖Φ
∗
γΦγ′‖2Fro = 1,

since Φ∗γΦγ′ is an (S + 1)× (S + 1) matrix, each of whose
entries have modulus 1

S . In general, ECTFFs that arise in
this way are not necessarily EITFFs. For example, harmonic
ETFs arising from McFarland difference sets are comprised
of regular simplices in this way [4], and yet are unitarily
equivalent to certain Steiner ETFs, implying the rank of the
cross-Gram matrices E∗γEγ′ is 1, not S. That said, in an
upcoming paper, we prove that in some cases, the ECTFFs
that arise from harmonic ETFs in this fashion are EITFFs:

Theorem 1 ([8]): Let D be a D-element difference set for
an abelian group G of order G, and let D be disjoint from a
subgroup H of G of order H = G

S+1 where S = [G(D−1)
G−D ]

1
2 .

Let {Uγ}γ∈Ĝ/H⊥ be the sequence of S-dimensional subspaces
of CD spanned by the regular simplices that comprise the
corresponding harmonic ETF. Then, letting Dg := (D−g)∩H
for any g ∈ G, we have #(Dg) = D

S for any g /∈ H, and
moreover, {Uγ}γ∈Ĝ/H⊥ is an EITFF for CD if and only if
each Dg is a difference set for H.

Essentially, this result states that when a harmonic ETF
forms an EITFF in this way, the underlying difference setD for
G is comprised of S difference sets for H, each of cardinality
D
S . In particular, Conjecture 1 holds for such EITFFs.

We conclude by discussing how Theorem 1 is not vacuous.
In fact, there is an infinite family of difference sets that yield
EITFFs in this way. To elaborate, for any prime power Q
and integer J ≥ 3, the complement of the Singer difference
set (11) is itself a (cyclic) difference set with parameters

D = QJ−1, G = QJ−1
Q−1 , S =

[D(G−1)
G−D

] 1
2 = Q

J
2 ,

and so the corresponding harmonic ETF is comprised of
regular simplices if it is disjoint from a subgroup H of order
H = G

S+1 = (Q
J
2 − 1)/(Q − 1). Since G is cyclic, such a

subgroup H is necessarily unique, and moreover exists if and
only if Q

J
2 is an integer, that is, when either Q is a perfect

square or J is even. In fact, when J is even, FQJ/2 is a subfield
of FQJ , implying H = F×

QJ/2/F×Q is the unique subgroup of
G = F×

QJ/F×Q of the appropriate order.
Summarizing, for any prime power Q and even integer

J ≥ 4, the harmonic ETF arising from the complement of
a Singer difference set (11) for G = F×

QJ/F×Q is comprised
of regular simplices if it is disjoint from H = F×

QJ/2/F×Q.
Equivalently, the Singer difference set (11) must itself contain
H. Remarkably, while the Singer difference set might not have
this property, a shift of it—an alternative difference set of
the same cardinality—always does. Indeed, when J is even,
the field trace from FQJ to FQ factors through the field
traces to and from FQJ/2 : the “freshman’s dream” implies
tr(β) =

∑J−1
j=0 β

Qj

=
∑J/2−1
j=0 (β + βQ

J/2

)Q
j

. In particular,
if βQ

J/2−1 = −1 then tr(β) = 0 and β lies in the Singer
difference set (11). At the same time, βQ

J/2−1 = 1 for any

β ∈ FQJ/2 . As such, in the special case where Q is even,
1 = −1 and so the Singer difference set (11) indeed contains
H = F×

QJ/2/F×Q. If instead Q is odd, −1 = α(QJ−1)/2 where
α is the generator of F×

QJ . This implies β0 := α(QJ/2+1)/2

satisfies βQ
J/2−1

0 = −1, and so tr(β0β) = 0 for all β ∈ F×
QJ/2 .

As such, when Q is odd, H is contained in the shift of the
Singer difference set (11) by β0

−1
.

Altogether, we see that regardless of whether or not Q is
even, when J ≥ 4 is even, there is always some translation
of the Singer difference set (11) for G = F×

QJ/F×Q so that its
complement D is disjoint from the subgroup H = F×

QJ/2/F×Q
of order H = G

S+1 . As such, the corresponding harmonic ETF
yields an EITFF in the manner of Theorem 1 if and only if
Dg := (D − g) ∩ H is a difference set for H for all g ∈ G.
Taking complements, this equates to having

γ−1{β ∈ F×
QJ/F×Q : tr(β) = 0} ∩ (F×

QJ/2/F×Q)

= {β ∈ F×
QJ/2/F×Q : tr(γβ) = 0}

being a difference set for H for all γ ∈ F×
QJ . As detailed

in [8], this is indeed the case since, by properties of the field
trace, this set is either H or a Singer difference set for H.
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