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Abstract—We consider a variant of the Zak transform for a
finite group G with respect to a fixed abelian subgroup H , and
demonstrate a relationship with representations of G induced
from characters of H . We also show how the Zak transform can
be used to study right translations by H in L2(G), and give some
examples of applications for equiangular tight frames.

The purpose of this note is to demonstrate some connections
between the Zak transform and the theory of induced repre-
sentations. We also show some applications for right shift-
invariant spaces, and for equiangular tight frames that occur
as orbits of induced representations. For the sake of clarity, we
restrict our attention to the setting of finite groups, where we
can safely ignore convergence issues. However, the results in
Sections I and II should also hold (with suitable modification)
on locally compact groups.

I. INDUCED REPRESENTATIONS

Fix a finite group G, an abelian subgroup H , and a
transversal Ω ⊆ G for G/H . Denote Ĥ for the Pontryagin dual
group of characters α : H → T under pointwise multiplication.
We equip each of G,H,Ω with counting measure, while Ĥ is
given probability measure. The left regular representation of G
on L2(G) is given by (Lxf)(y) = f(x−1y), where x, y ∈ G
and f ∈ L2(G). Given a Hilbert space H, we write L2(Ĥ;H)
for the space of functions ϕ : Ĥ → H, with the inner product

〈ϕ,ψ〉L2(Ĥ;H) :=
1

|Ĥ|

∑
α∈Ĥ

〈ϕ(α), ψ(α)〉H.

With each α ∈ Ĥ we associate the Hilbert space

Fα = {f ∈ L2(G) : f(xh) = α(h)f(x) ∀x ∈ G, h ∈ H},

〈f, g〉Fα :=
1

|H|
∑
x∈G

f(x)g(x) =
∑
x∈Ω

f(x)g(x).

Notice that any f ∈ Fα is completely determined by its values
on Ω, and restriction defines a unitary Fα ∼= L2(Ω). The
induced representation indGH α : G→ U(Fα) is given by

[(indGH α)(x)f ](y) := f(x−1y) (f ∈ Fα, x, y ∈ G).

Intuitively, indGH α performs time-frequency shifts on L2(Ω):
with respect to the standard basis, each (indGH α)(x) is given
by a monomial (“phased permutation”) matrix.

We will consider the induced representations as an en-
semble akin to

⊕
α∈Ĥ indGH α. To that end, the direct inte-

gral
∫ ⊕
α̂
Fα dα is the Hilbert space consisting of functions

ϕ : Ĥ → L2(G) such that ϕ(α) ∈ Fα for every α ∈ Ĥ ,
equipped with the inner product

〈ϕ,ψ〉∫⊕
α̂
Fα dα :=

1

|Ĥ|

∑
α∈Ĥ

〈ϕ(α), ψ(α)〉Fα .

Overall,
∫ ⊕
Ĥ
Fα dα differs from

⊕
α∈Ĥ Fα only by a factor

of 1/|Ĥ| in its inner product. As with
⊕

α∈Ĥ indGH α, the
representation

∫ ⊕
Ĥ

indGH αdα : G → U(
∫ ⊕
Ĥ
Fα dα) is defined

by applying indGH α coordinate-wise: for x ∈ G and ϕ ∈∫ ⊕
Ĥ
Fα dα, (

∫ ⊕
Ĥ

indGH αdα)(x)ϕ ∈
∫ ⊕
Ĥ
Fα dα is the vector-

valued function on Ĥ whose value at β is

[(

∫ ⊕
Ĥ

indGH αdα)(x)ϕ](β) := (indGH β)(x) [ϕ(β)].

In [1], we extended the Zak transform construction of
Weil [2] to analyze the left regular representation of a locally
compact group, restricted down to an abelian subgroup. For
the specific subgroup Z ≤ R, the construction of [1] reduces to
what is usually called the Zak transform L2(R)→ L2([0, 1]2),
which features prominently in time-frequency analysis [3]. In
the present setting, the Zak transform of [1] amounts to the
operator Z ′ : L2(G)→ L2(Ĥ;L2(G)) given by

(Z ′f)(α)(x) :=
∑
h∈H

f(hx)α(h),

where f ∈ L2(G), α ∈ Ĥ , and x ∈ G. Here, we introduce
a modified version more suitable for the analysis of right
translations by H (as opposed to the left translations in [1]).

Definition 1: Given any f ∈ L2(G) and x ∈ G, define
fx ∈ L2(H) by fx(h) = f(xh). The Zak transform of f
evaluated at α ∈ Ĥ is the function (Zf)(α) ∈ L2(G) with

(Zf)(α)(x) := f̂x(α−1) =
∑
h∈H

f(xh)α(h) (x ∈ G).

This formula appears widely in the basic theory of induced
representations on locally compact groups [4], [5]. The point
here is that we obtain a version of the Zak transform by
allowing α to vary across Ĥ .



Theorem 1: The Zak transform Z : L2(G)→
∫ ⊕
Ĥ
Fα dα is a

unitary operator that intertwines the left regular representation
of G with

∫ ⊕
Ĥ

indGH αdα.
Proof: It is easy to see that Z maps L2(G) into

∫ ⊕
Ĥ
Fα dα

while intertwining the left regular representation of G with∫ ⊕
Ĥ

indGH αdα. A straightforward application of Plancherel’s
Theorem on L2(H) shows that Z is an isometry. By counting
dimensions, we conclude that Z is unitary.

II. SHIFT-INVARIANT SPACES

How about the right regular representation? We now show
the Zak transform diagonalizes right translations by H . To
that end, it will be convenient to identify Fα ∼= L2(Ω)
by restriction. (Recall Ω is a transversal for G/H .) We can
then view Z as a function Zr : L2(G) → L2(Ĥ;L2(Ω)) by
restricting (Zrf)(α) := (Zf)(α)|Ω.

In the theorem below, we write Rh ∈ U(L2(G)) for right
translation by h ∈ H , namely, (Rhf)(x) := f(xh). Mean-
while, the modulation representation of H on L2(Ĥ;L2(Ω))
is defined by the formula (Mhf)(α) := α(h) · f(α).

Theorem 2: The Zak transform defines a unitary
Zr : L2(G) → L2(Ĥ;L2(Ω)) that intertwines right H-
translations with modulations: Zr(Rhf) = Mh(Zrf).

Proof: Restriction defines unitaries Fα ∼= L2(Ω) for
each α ∈ Ĥ . Overall, it gives an identification

∫ ⊕
Ĥ
Fα dα ∼=

L2(Ĥ;L2(Ω)). That Zr is unitary is thus a corollary of
Theorem 1. The intertwining formula is obtained by reindexing
the sum in the definition of Z.

Definition 2: A subspace V ⊆ L2(G) is called right H-shift
invariant (right H-SI) if RhV = V for every h ∈ H . A range
function is a mapping J : Ĥ → {subspaces of L2(Ω)}.

Following the well-trodden path of [6], [7], [8], [9], the
Zak transform serves to characterize right H-SI spaces in
terms of range functions. Similar connections between the Zak
transform and (left) shift-invariant spaces were first observed
in [1], [10], and, independently, [11].

Corollary 1: Given a range function J , put

VJ := {f ∈ L2(G) : (Zrf)(α) ∈ J(α) ∀α ∈ Ĥ}.

Then the mapping J 7→ VJ is a one-to-one correspondence
between range functions and right H-SI subspaces of L2(G).

Proof: With each range function J , associate the space

MJ = {f ∈ L2(Ĥ;L2(Ω)) : f(α) ∈ J(α) ∀α ∈ Ĥ}. (1)

Thus, ZrVJ = MJ . In the language of [12], the characters
of Ĥ are a “determining set” for L1(Ĥ), by [1, Lemma 5.2].
Applying [12, Theorem 2.4], we see that J 7→ MJ = ZrVJ
gives a one-to-one correspondence between range functions
and modulation-invariant (MI) spaces in L2(Ĥ;L2(Ω)). By
Theorem 2, Z−1

r gives a one-to-one correspondence between
MI spaces in L2(Ĥ;L2(Ω)) and right H-SI spaces in L2(G).
Composing these correspondences proves the corollary.

Definition 3: In a Hilbert space H, a sequence of vectors
Φ = {fj}j∈I is a frame if there are bounds A,B > 0 such that
A ‖g‖2 ≤

∑
j∈I |〈g, fj〉|2 ≤ B ‖g‖2 for every g ∈ H. It is a

tight frame if A = B, and equiangular if there is a constant
C such that |〈fi, fj〉| = 1 when i = j and C otherwise. An
equiangular tight frame (ETF) is both tight and equiangular.

Given a finite sequence A = {fj}j∈[n] in L2(G), we denote
E(A) = {Rhfj}h∈H, j∈[n] for the sequence of its right shift
by H , and S(A) = spanE(A) for the right H-SI space it
generates. Applying Corollary 1, it is easy to see that S(A) =
VJA , where JA (α) := span{(Zrfj)(α) : j ∈ [n]}.

Corollary 2: Let A = {fj}j∈[n] be a finite sequence in
L2(G). For any A,B > 0, the following are equivalent:
(i) E(A) is a frame for S(A) with bounds A,B.

(ii) For every α ∈ Ĥ , {(Zrfj)(α)}j∈[n] is a frame for JA (α)
with bounds A,B.

Similar results appear in [13], [9], [14], [1], [10], [11].
Proof: Let MJA be as in (1). By Theorem 2, (i) is

equivalent to
(i’) {Mh(Zrfj)}h∈H, j∈[n] is a frame for MJA with bounds

A,B.
For each h ∈ H , let eh ∈ L∞(Ĥ) be the evaluation character
given by eh(α) = α(h). In the language of [1], D := {eh}h∈H
is a “Parseval determining set” for L1(Ĥ), by [1, Lemma 5.2].
Then [1, Theorem 2.10] gives the equivalence of (i’) and (ii).

In the case of a single generator A = {f}, Corollary 2
reduces to the following analogue of [13, Theorem 3].

Corollary 3: For any f ∈ L2(G) and any A,B > 0,
{Rhf}h∈H is a frame for S({f}) with bounds A,B if and
only if the following holds for every α ∈ Ĥ:∑

x∈Ω

|(Zrf)(α)(x)|2 ∈ {0} ∪ [A,B].

III. EQUIANGULAR TIGHT FRAMES

For the remainder of the paper, we focus on the special
case where G = H oK. Then G acts on Ĥ by the formula
(x · α)(h) = α(x−1hx). We choose Ω = K for a transversal
of G/H . Given α ∈ Ĥ , we can identify Fα ∼= L2(K) by
restriction, as above. In that case, indGH α gives time-frequency
shifts in L2(K): for h ∈ H , x, y ∈ K, and f ∈ L2(K),

[(indGH α)(hx)f ](y) = (y · α)(h) f(x−1y).

By the Mackey machine, indGH α is irreducible whenever the
little group Kα := {x ∈ K : x · α = α} is trivial (see
Section 6.6 of [4]).

In this section, we study ETFs for L2(K) whose vectors
span lines that occur as orbits of indGH α. To that end, it will
be helpful to define the projective stabilizer of a unit vector
f ∈ L2(K) to be the group of all x ∈ G stabilizing span{f},

L = {x ∈ G : (indGH α)(x)f = cf for some c ∈ T}.

The function of positive type associated with f ∈ L2(K) is
g ∈ L2(G) given by g(x) = 〈f, (indGH α)(x)f〉.

Definition 4: Given a finite sequence Φ = {fj}j∈[n] of unit
vectors, a projective reduction of Φ is a subsequence Φ′ such
that every line in the set {span{fj} : j ∈ [n]} is represented
exactly once in Φ′.
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Projective reduction is not unique, but any two projective
reductions of Φ are equiangular (resp. tight) at the same time.

Lemma 1: Assume G = H o K, and fix α ∈ Ĥ .
Given a unit vector f ∈ L2(K), let g ∈ L2(G) be its
function of positive type. Then any projective reduction Φ′

of Φ := {(indGH α)(x)f}x∈G is equiangular if and only if
there exists C 6= 1 and a set L ⊆ G containing 1G such that

|g(x)|2 =

{
1, if x ∈ L;

C, otherwise.
(2)

In that case, L is the projective stabilizer of f , and Φ′ contains
|G|/|L| vectors. Moreover, Φ′ is an ETF for L2(K) if and only
if f is cyclic for indGH α and (2) holds with C = |H|−|L|

|G|−|L| .
Proof: We abbreviate π = indGH α throughout. By the

equality condition in Cauchy-Schwarz, the projective stabilizer
of f is the set L of all x ∈ G such that |g(x)|2 = 1. Fix
a transversal {xj}j∈[n] for G/L. For any x, y ∈ G, we have
span{π(x)f} = span{π(y)f} if and only if there exists c ∈ T
such that π(y−1x)f = cf , if and only if xL = yL. Thus,
Φ′ := {π(xj)f}j∈[n] is a projective reduction of Φ.

For any j ∈ [n] and any y ∈ L with π(y)f = cf , we have

|g(xjy)|2 = |〈f, π(xj)cf〉|2 = |g(xj)|2,

so |g|2 is a function on G/L. Moreover, for any i 6= j,
|〈π(xi)f, π(xj)f〉|2 = |g(x−1

i xj)|2. Therefore,

{|〈π(xi)f, π(xj)f〉|2 : i 6= j} = {|g(x)|2 : x /∈ L}.

It follows that Φ′ is equiangular if and only if (2) holds.
Finally, assume Φ′ is equiangular, and put d = |K|. Then

Φ′ is a frame for L2(K) if and only if L2(K) = span Φ′ =
span Φ, i.e. f is a cyclic vector. In that case, the Welch
bound [15] states that Φ′ is an ETF for L2(K) if and only if

|〈π(xi)f, π(xj)f〉|2 = C =
n− d
d(n− 1)

=
|H| − |L|
|G| − |L|

whenever i 6= j.
In many cases of interest, it is simpler to understand |g|2

by applying the Zak transform with the following formulae.
Lemma 2: Assume G = H o K, and fix α ∈ Ĝ. Given

f ∈ L2(K), let g ∈ L2(G) be its function of positive type.
Then for any β ∈ Ĥ and x ∈ K,

(Zrg)(β)(x) = |H|
∑
y∈K,
y·α=β

f(xy)f(y). (3)

Proof: It follows easily from the definitions by applying
character orthogonality on H .

Lemma 3: For any f, g ∈ L2(G) and any α ∈ Ĥ , we have

[Z(f · g)](α) =
1

|Ĥ|

∑
β∈Ĥ

(Zf)(β) · (Zg)(β−1α)

and (Zf)(α) = (Zf)(α−1). In particular,

(Z|f |2)(α) =
1

|Ĥ|

∑
β∈Ĥ

(Zf)(β) · (Zf)(α−1β). (4)

(Here, multiplication and complex conjugation in L2(G) are
interpreted pointwise.)

Proof: It follows easily from the fact that the Fourier
transform L2(H) → L2(Ĥ) intertwines pointwise multi-
plication and conjugation with convolution and involution,
respectively. We leave details to the reader.

A. Affine linear groups and Paley difference sets

Fix a prime power q = pr > 3 with q ≡ 3 mod 4, and let
Fq be the finite field of order q. Write F×2

q for the group of
nonzero quadratic residues. Take G to be the group of all affine
transformations x 7→ ax+ b on Fq with a ∈ F×2

q and b ∈ Fq .
Then G = H o K, where H is the group of translations
τb(x) := x + b and K that of dilations θa(x) := ax. If
ω = exp(2πi/p), then the dual group Ĥ consists of all
characters αb(τc) := ωtr(bc), where tr : Fq → Fp is the field
trace. (See [16].) Then αaαb = αa+b, and the action of K on
Ĥ is given by ϑa · αb = αab.

Proposition 1: Let f ∈ L2(K) be the constant function
f(ϑa) ≡

√
2/(q − 1). Then the projective reduction of Φ =

{(indGH α1)(x)g}x∈G is an ETF of q vectors in L2(K), a space
of dimension (q − 1)/2.

The resulting ETF is well known, but not by this con-
struction. In fact, direct examination of the short fat matrix
representing Φ′ shows we obtain the harmonic ETF [17], [18],
[19] corresponding to the Paley difference set F×2

q in Fq .
Proof: Let g ∈ L2(G) be the function of positive type

associated with f . For any β = αb ∈ Ĥ and any x = ϑa ∈ K,
we have x ·α1 = β if and only if a = b. Comparing with (3),
we deduce that (Zrg)(αb) ≡ 2q

q−1 χF×2
q

(b). Then (4) produces

(Zr|g|2)(αb) ≡
4q

(q − 1)2

∑
c∈Fq

χF×2
q

(c)χF×2
q

(c− b).

It is well known that F×2
q is a (q, q−1

2 , q−3
4 )-difference set in

(Fq,+), so that∑
c∈Fq

χF×2
q

(c)χF×2
q

(c− b) =

{
q−1

2 , if b = 0;

q−3
4 , otherwise.

(See [20] for background.) Overall, (Zr|g|2)(αb) ≡ 2q/(q−1)
when b = 0, and q(q − 3)/(q − 1)2 otherwise.

By comparison, let g′ ∈ L2(G) be the desired value of |g|2,

g′(x) =
q + 1

(q − 1)2
+
q(q − 3)

(q − 1)2
χK =

{
1, if x ∈ K;
q+1

(q−1)2 , otherwise.

The constant function 1 ∈ L2(G) has Zak transform
(Zr1)(αb)(x) =

∑
h∈H αb(h) ≡ qδ0,b, while

(ZrχK)(αb)(x) =
∑
h∈H

χK(hx)αb(h) ≡ 1.

By linearity, (Zrg
′)(αb) ≡ q(q+1)

(q−1)2 δ0,b + q(q−3)
(q−1)2 = 2q/(q − 1)

when b = 0, and q(q − 3)/(q − 1)2 otherwise. Since Zr is
injective, |g|2 = g′.

Finally, the little group Kα1
is trivial, so indGH α1 is

irreducible, and f 6= 0 is a cyclic vector. By Lemma 1, the
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projective reduction of Φ = {(indGH α1)(x)f}x∈G is an ETF
consisting of q vectors.

B. Finite Heisenberg groups and SIC-POVMs

Fix an integer d ≥ 2, and define

G = 〈r, s, t : rd = sd = td = [r, s] = [t, s] = 1, trt−1 = rs〉.

This is the Heisenberg group mod d. We have G = H oK,
where H := 〈r, s〉 ∼= Zd × Zd and K := 〈t〉 ∼= Zd.
Denoting ω = e2πi/d, the dual group Ĥ consists of characters
αa,b(r

msn) := ωam+bn, with a, b ∈ Zd. In this notation,
αa,bαa′,b′ = αa+a′,b+b′ , and the action of K on Ĥ satisfies
tk · αa,b = αa−kb,b.

Define π := indGH α0,1. Then the little group Kα0,1 is
trivial, and π is irreducible. The projective stabilizer of every
f ∈ L2(K) contains L := 〈s〉, since π(sn) = ωnI . If L is the
entire projective stabilizer of f , then the projective reduction
of {π(x)f}x∈G contains d2 vectors in a space of dimension d.
Any ETF of this form is known as a symmetric informationally
complete positive operator-valued measure (SIC-POVM) in
quantum information theory [21]. Zauner’s conjecture posits
that SIC-POVMs exist for every d [22]. A large body of
numerical evidence supports this conjecture [23].

The following characterization of SIC-POVMs generated by
π has been found many times [24], [25], [26]. We give a simple
proof using the Zak transform.

Proposition 2: Let f ∈ L2(K) be an arbitrary unit vector.
Then the projective reduction of Φ := {π(x)f}x∈G is a SIC-
POVM if and only if the following holds for every a, h ∈ Zd:∑

b∈Zd

f(th+b)f(tb)f(th+a+b)f(ta+b) =
δa,0 + δh,0
d+ 1

.

Proof: Let g ∈ L2(G) be the function of positive type as-
sociated with f . Take any a, c, h ∈ Zd. Since tk ·α0,1 = α−k,1,
Lemma 2 says that (Zrg)(αa,c)(t

h) = d2f(th−a)f(t−a)δc,1.
Applying Lemma 3, we obtain

(Zr|g|2)(αa,c)(t
h)

(5)
= d2

∑
b∈Zd

f(th−b)f(t−b)f(th−b+a)f(ta−b)δc,0.

On the other hand, let g′ = 1
d+1 + d

d+1χL ∈ L
2(K), so that

g′(x) = 1 when x ∈ L, and 1/(d+1) otherwise. By Lemma 1,
the projective reduction of Φ is a SIC-POVM if and only if
|g|2 = g′. As in the previous example, the constant function
1 ∈ L2(G) has Zak transform (Zr1)(αa,c)(t

h) ≡ d2δa,0δc,0.
Meanwhile,

(ZrχL)(αa,c)(t
h) =

∑
m,n∈Zd

χL(thrmsn)αa,c(r
msn)

=
∑

m,n∈Zd

χL(rmshm+nth)αa,c(r
msn)

= δh,0
∑
n∈Zd

αa,c(s
n)

= dδh,0δc,0.

By linearity,

(Zrg
′)(αa,c)(t

h) =
d2

d+ 1
δc,0(δa,0 + δh,0). (6)

The proposition follows by comparing (5) and (6).
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2001.

[4] G. B. Folland, A course in abstract harmonic analysis. CRC Press,
Boca Raton, 1995.

[5] E. Kaniuth and K. F. Taylor, Induced representations of locally compact
groups. Cambridge University Press, Cambridge, 2013.

[6] H. Helson, Lectures on invariant subspaces. Academic Press, New
York-London, 1964.

[7] T. P. Srinivasan, “Doubly invariant subspaces,” Pacific J. Math., vol. 14,
pp. 701–707, 1964.

[8] C. de Boor, R. A. DeVore, and A. Ron, “The structure of finitely
generated shift-invariant spaces in L2(R

d),” J. Funct. Anal., vol. 119,
no. 1, pp. 37–78, 1994.

[9] M. Bownik, “The structure of shift-invariant subspaces of L2(Rn),” J.
Funct. Anal., vol. 177, no. 2, pp. 282–309, 2000.

[10] J. W. Iverson, “Frames generated by compact group actions,” Trans.
Amer. Math. Soc., vol. 370, no. 1, pp. 509–551, 2018.

[11] D. Barbieri, E. Hernández, and V. Paternostro, “The Zak transform and
the structure of spaces invariant by the action of an LCA group,” J.
Funct. Anal., vol. 269, no. 5, pp. 1327–1358, 2015.

[12] M. Bownik and K. A. Ross, “The structure of translation-invariant spaces
on locally compact abelian groups,” J. Fourier Anal. Appl., vol. 21, no. 4,
pp. 849–884, 2015.

[13] J. J. Benedetto and S. Li, “Multiresolution analysis frames with applica-
tions,” in IEEE ICASSP (International Conference on Acoustics, Speech,
and Signal Processing), 1993, pp. 304–307.

[14] A. Ron and Z. Shen, “Frames and stable bases for shift-invariant
subspaces of L2(Rd),” Canad. J. Math., vol. 47, no. 5, pp. 1051–1094,
1995.

[15] L. Welch, “Lower bounds on the maximum cross correlation of signals,”
IEEE Trans. Inform. Theory, vol. 20, no. 3, pp. 397–399, 1974.

[16] R. Lidl and H. Niederreiter, Finite fields. Addison-Wesley, Reading,
MA, 1983.

[17] T. Strohmer and R. W. Heath, Jr., “Grassmannian frames with appli-
cations to coding and communication,” Appl. Comput. Harmon. Anal.,
vol. 14, no. 3, pp. 257–275, 2003.

[18] P. Xia, S. Zhou, and G. B. Giannakis, “Achieving the Welch bound
with difference sets,” IEEE Trans. Inform. Theory, vol. 51, no. 5, pp.
1900–1907, 2005.

[19] C. Ding and T. Feng, “A generic construction of complex codebooks
meeting the Welch bound,” IEEE Trans. Inform. Theory, vol. 53, no. 11,
pp. 4245–4250, 2007.

[20] C. J. Colbourn and J. H. Dinitz, Eds., The CRC handbook of combina-
torial designs. CRC Press, Boca Raton, 1996.

[21] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmet-
ric informationally complete quantum measurements,” J. Math. Phys.,
vol. 45, no. 6, pp. 2171–2180, 2004.

[22] G. Zauner, “Quantendesigns—grundzüge einer nichtkommutativen de-
signtheorie,” Ph.D. dissertation, University of Vienna, Vienna, Austria,
1999.

[23] A. J. Scott and M. Grassl, “Symmetric informationally complete
positive-operator-valued measures: a new computer study,” J. Math.
Phys., vol. 51, no. 4, pp. 042 203, 16, 2010.

[24] D. M. Appleby, H. B. Dang, and C. A. Fuchs, “Symmetric
informationally-complete quantum states as analogues to orthonormal
bases and minimum-uncertainty states,” Entropy, vol. 16, no. 3, p. 1484,
2014.

[25] L. Bos and S. Waldron, “Some remarks on Heisenberg frames and sets
of equiangular lines,” New Zealand J. Math., vol. 36, pp. 113–137, 2007.

[26] M. Khatirinejad, “On Weyl-Heisenberg orbits of equiangular lines,”
Journal of Algebraic Combinatorics, vol. 28, no. 3, pp. 333–349, Nov
2008.

4


