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Abstract—Occam’s razor is a fundamental problem-solving
principal and states that one should seek the simplest possible
explanation. Indeed, classical machine learning models such as
(sparse) linear regression aims to find simple explanations to
data by using with as few parameters as possible. On the other
hand, modern techniques such as deep networks are often trained
in the overparameterized regime where the model size exceeds
the size of the training dataset. While this increases the risk of
overfitting and the complexity of the explanation, deep networks
are known to have good generalization properties. In this talk, we
take a step towards resolving this paradox: We show that solution
found by first order methods, such as gradient descent, has the
property that it has near shortest distance to the initialization of
the algorithm among all other solutions. We also advocate that
shortest distance property can be a good proxy for the simplest
explanation. We discuss the implications of these results on neural
net training and also highlight some outstanding challenges.

I. INTRODUCTION

Suppose we are given a dataset of n input-output pairs
(i, yi)hq € R? x R. In order to explain the relation between
inputs and outputs, we shall pick a function class f parame-
terized by 6 € RP, a (non-negative) loss function £, and solve
the empirical risk minimization

n
min £(6) := 3 L (vi, f(:,0)) (1)
OecRP =
Our technical discussion will mostly focus on the quadratic
loss L(a,b) = (a-0b)?/2.

Classical statistical learning theory postulates that to find
a model that generalizes well and avoids overfitting, the size
of the training data n should be more than the model size
p. For instance, consider the case of linear regression where
f(x,0) = 0. In this case, there is no unique solution in
the overparameterized regime n < p as we wish to solve the
system of n equations (y; = ! @)™, and there are p unknowns.
We do remark that one can guarantee unique solution by
incorporating priors on @ such as sparsity, low-rank, and
subspace constraints. Indeed, much of the compressed sensing
and low-rank approximation literature aligns with this direction.

Contrary to the classical literature, popular machine learning
models such as deep networks are often trained via first-
order methods in the over-parameterized regime n < p. This
regime, in theory, allows the model to perfectly (over)fit to
the training data. Despite this, deep networks have surprisingly

good generalization abilities i.e. they perform well on unseen
test datasets. It is also not at all clear when and how they
overfit to the training data as the associated learning problem
is highly nonconvex. These questions bring new challenges to
understand the fundamental aspects of state-of-the-art machine
learning models. In this work, we will aim to shed light on
some of these challenges with a focus on optimization and first
order methods. Gradient descent algorithm aims to solve (1)
by starting from some initial point 8y and running the iterative
updates

0,,1=0,- TIV»C(GT)a )
where 7 is the step size. Since deep networks are trained
using variants of gradient descent, it is important to understand
the properties of the solution found by gradient updates (2).
In this talk, we will argue that, under certain deterministic
assumptions, solution found by gradient descent achieves zero
training loss (i.e. £(0.) = 0) and has the property that it has
near shortest distance to the initialization 6y among all other
solutions. Mathematically speaking, the latter means

0. -6 ~ inf |0 -6¢]e,.
16 =Bk, ~ inf 66,

We will also discuss implications of these findings on the
optimization of neural networks. In particular, what are the
fundamental limitations on the overfitting ability of the neural
networks i.e. under what conditions a neural network can
achieve zero-training loss in (1)? We will focus on one-hidden
layer neural networks with k& hidden units characterized by

an activation ¢, an input weight matrix W e R**¢ and output
weight vector v € R* via
f(x, (v, W) = v  $(W). (3)

We will provide a discussion of recent optimization results
on this topic most of which focus on the problem of training
input weights W. We will demonstrate the sub-optimality of
these bounds by showing that one can train only the output
weights v to achieve strictly better bounds. This will lead to
our discussion on outstanding challenges in optimization and
generalization of neural networks.



II. RELATED WORKS

Implicit regularization: An interesting body of related works
investigate the implicit regularization capabilities of (stochastic)
gradient descent for separable classification problems including
[13], [16]-[18], [23], [26]. These results show that gradient
descent does not converge to an arbitrary solution, for instance,
it has a tendency to converge to the solution with the max
margin or minimal norm. Some of this literature apply to
regression problems as well (such as low-rank regression).

Overparameterized neural networks: Several recent papers
[3], [8], [9], [21], [25], [27], [28] study the benefits of
overparameterization for training neural networks and related
optimization problems. Very recent works [1], [2], [10],
[11], [14], [29] show that overparameterized neural networks
can fit the data with random initialization if the number
of hidden nodes are polynomially large in the size of the

dataset. Our discussion is inherently connected to these works.

In particular, we will illustrate that existing results require
extreme overparameterization i.e. they need network to be
much larger than the dataset. We will also highlight the
fundamental optimization principles behind these works by
studying overparameterized learning in a generic setup. An
equally important question is understanding the generalization
capabilities of overparameterized models. This is the subject of
a few interesting recent papers [4]-[7], [12], [15], [22]. We will
provide a discussion of generalization in terms of the shortest
distance property of gradient descent.

III. OVERPARAMETERIZED OPTIMIZATION

As a prelude to understanding the key properties of gradient
descent in over-parameterized nonlinear learning we begin by
focusing on the simple case of linear regression. In this case
the mapping in (1) takes the form f(z;,0) = 1. Gathering
the input data x; and labels y; as rows of a matrix X € R7*d
and a vector y € R”, the fitting problem amounts to minimizing
the loss £(0) = % | X6 - yH?Z Denote the projection operator
to null space of X by Il and the pseudo-inverse solution,
when n < p, by

0" = XT(XXT)y.

It can be shown that, gradient descent with a reasonable step
size converges to a unique solution

000 = 0T + Hnuu(BO).

This solution, perhaps not surprisingly, is the closest one to
6. This follows from the fact that gradient updates always lie
on the row space of X and never touches the null space. The
distance to 6y is equal to the length of the pseudo-inverse 8.

The natural question is how to move from least-squares to
nonlinear problems such as neural net training. A key idea in
the recent works [1], [2], [10], [11], [14], [19], [29] is based
on replacing the data matrix X with a n x p nonlinear feature
matrix obtained by the Jacobian of the problem. Jacobian is a
function of data and model weights and given by the matrix
of partial derivatives

J(X,0) =20

af(wn,e)]T
96

In contrast to neural net specific results which utilize properties
of randomized initialization of 6, (e.g. random Gaussian
weights), in [19], we provide three deterministic assumptions
that govern when gradient descent attains zero loss for non-
linear least squares. Here, we provide a variation of the result
of [19] which doesn’t require smoothness of Jacobian.

Our first assumption is that, at the initial point 6y the
minimum singular value of the Jacobian is lower bounded.

Assumption 1. Fix a point 8y. We have that omin(J(00)) >
2ae where omin() returns the minimum singular value.

The second assumption is that, spectral norm (denoted by
|- ) of Jacobian is upper bounded by some quantity (3.

Assumption 2. For all 0 € R?, we have that |7 (0)| < 8.

Our final assumption is there is some neighborhood of 6
around which Jacobian doesn’t deviate much.

Assumption 3. Fix a point 6y and a number R > 0. For any 0
satisfying |0 — 6o s, < R, we have that | T (09)-T(0)]| < /3.

These three properties essentially ensure that, even if the
problem is nonlinear and nonconvex, it has a linear-regression-
like behavior. The following theorem formalizes this.

Theorem 1. Set L(x,y) = (x—y)?/2. Given 0y € R, suppose
Assumptions 1, 2, and 3 hold with 3 > 2a and

5y - £(80)],
@)le.

R

Then, picking constant learning rate n < Fli" all gradient
iterations (2) obey the followings

2
ly = £(0)es < (1= )y = £(80)le )
210 =00les + |y~ F(O) |es < [y~ F(B) s (5)

The line (4) shows that gradient descent converges linearly
fast to achieve zero loss and setting n = 1/2, it finds an &-
approximate global minima in 5—2 log(%) steps. The second
line (5) is of particular importance. Ignoring the residual
ly - f(6;)|e¢, term, (5) guarantees that, the model parameter
6 will never step out of the radius

5
16 - 6o, < a”y - f(60)]le, -

Hence gradient descent finds a solution within this radius. In
[19], we complement this by showing that there is no global
minimizer within the region [0 - 6g]s, < %Hy—f(Oo)ng.
These upper and lower bounds can be shown to be sharp
highlighting the fact that gradient descent finds a solution with
near shortest distance to 8y among all global minima.

Implications for generalization: Ensuring that model per-
forms well on unseen data is of critical importance. The
generalization ability can be characterized in terms of the
Rademacher complexity of the model space with respect to
dataset (;,y;)™,. If the distance to initialization |6 — g |,
is guaranteed to be upper bounded by some I', then, we can



provide generalization guarantees for 0., as a function of the
search space {6 € R | |6 — 6y, < T'}. In particular, as the
sample size n increases, the generalization error (on fresh
samples) will decay as O(%) There are interesting initial
results in this direction for neural net training [1].

IV. SOME OUTSTANDING CHALLENGES ON NEURAL NETS

In this section, we focus on recent developments in overpa-
rameterized neural network training from a critical point of view.
As discussed in the introduction, it is of interest to understand
under what conditions neural nets achieve zero training error,
in particular, networks with one-hidden layer as described by
(3). Here, the challenge arise from the nonlinear activation ¢
and simultaneous optimization over input/output layers. Recent
works [2], [10], [11], [20], [29] govern the overfitting ability in
terms of number of hidden units k and focus on optimization
over W (some of these works also apply to deep networks).
Intuitively, W is the right parameter to focus as compared to v
since it contains many more parameters. Input layer also learns
and extracts the useful features from data and is critical for
good generalization. Existing results require that (i) the number
of hidden nodes & should be polynomially large in dataset
size n and (ii) dataset satisfies certain separability conditions
such as Assumption 1. Our recent work [20] improves over the
results of [10], [11] and establishes the best known optimization
bounds to find that

e k2 O(n?/d) is sufficient for smooth activations ¢,
e k2 O(n*/d®) is sufficient for ReLU activation ¢(z) =
max(z,0),

to ensure gradient descent on input layer achieves zero
training error from a randomly initialized weight matrix Wj,.
Unfortunately, even these improved results are fairly suboptimal
compared to best possible bounds. Input layer has kd degrees
of freedom and intuitively it should be able to fit the dataset
as long as n < O(kd). This intuition is supported by empirical
observations as well [27]. In contrast, bounds provided above
require n < O(v/kd) and do not allow & to scale linearly in n.

Here, we shall further formalize this gap between theory
and practice by considering the optimization over output layer
(for fixed W) and showing that, one can achieve zero training
error by only optimizing v in the regime k > O(n). Note that
output layer optimization is fairly straightforward. Letting ¢
apply entry-wise, set ® = ¢(W X7T) e R¥*"_ & represents the
features generated by the network and optimal v is given by
the pseudo-inverse

v =®(®TP®)y.

Pseudo-inverse will clearly achieve zero training error if ®
is full-rank and gradient descent will converge to pseudo-
inverse solution with sufficiently small step size. Hence the
key question we wish to address is: under what conditions
® is full-rank? Towards this goal, we introduce a variation
of Assumption 1 to characterize the optimization landscape
around v when W is randomly initialized and fixed.

Assumption 4. Let g ~ N(0,1;). For some constant o > 0
(as a function of input dataset X ), suppose the covariance
matrix obeys

E[¢(Xg)¢(Xg)"]>a’.

Here, g is intended to correspond to a single row of the
randomly initialized matrix W. Under Assumption 4, for

W K A(0,1), we have that
1
%E[@ch] > .

Building on this observation following theorem provides high
probability lower bound on i, (P).

Theorem 2. Suppose input samples (x;)i~, have unit Eu-
clidian norm and input weight matrix obeys W N (0,1).
Additionally, suppose Assumption 4 holds, and ¢ is the ReLU
activation (¢(x) = max(z,0)). If

s O (nlog(n) log(k) ) ’

o?

with probability 1 —n~100 — k7190 & = (W XT) is full-rank
and obeys

o-rnin(@) > g

vE 2

Proof. The proof is based on standard concentration arguments
involving subgaussian distributions and Matrix Chernoff bound
[24]. First, denoting ith row of W by w; and setting z; =
Xw;, observe that z; and ¢(z;) are | X |-Lipschitz function
of w;. Following this, using a union bound and Gaussian
concentration and noticing E[|z;]¢,] < |X|F = /1, with
probability 1 — kexp(—@(éQﬁ)), we have that

H(;s(zl)Hb < sz Hb < 5\/5 for all (6)

On this (truncation) event (6), z;’s are still statistically
i.i.d. and it can be shown that covariance does not change
much i.e. E[¢(2z;)¢(2:)T] = a?/2 (by using Assumption 4,
subgaussian tail, and picking large d to ensure high probability).
To proceed, applying Matrix Chernoff with 5 norm bounds
of (6) and covariance lower bounds of «?/2 yields that,

1 & ra? ka?
P(% ;¢(zi)¢(zi) > Z) > 1—”6XP(—O(%))~

1<i<k,

We conclude by union bounding the above probability with
that of (6) after setting 6 = O(\/logk) and noticing that k is
assumed to be large enough to ensure high probability. O

Discussion: Ignoring log factors and assuming constant o', this
result yields the aforementioned result k£ 2 O (n) to guarantee
zero training error by optimizing output layer alone. We
obviously acknowledge that optimizing over v alone is much
easier than optimizing over W or all layers of a deep network.
Indeed, earlier works involve fairly complicated arguments and
utilize deeper ideas (e.g. Theorem 1). However, it is somewhat

Similar assumptions are made by related works [2], [10], [11], [20].
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Fig. 1: Singular value spectrum of ® = (W XT) for k = 1600
and n = 100 to 800. Smaller n plots are stretched to fit [0, 800]
interval.

surprising that such a simple strategy can easily achieve better
bounds than what we have for input layer.

To demonstrate that Theorem 2 is indeed sensible, in Figure
1, we plotted the singular value distribution of the ® matrix
for varying sample sizes n = 100, 200,400, 800 and fixed input
dimension d = 20 and hidden units £ = 1600. In this plot,
n = 100,200,400 is properly stretched to be aligned with
n = 800. Here, we generated W and X with i.i.d. N'(0,1)
and N (0,1/d) entries respectively. While ® has a bimodal
spectrum with some large and some small singular values, the
minimum singular value is persistently nonzero despite n and
k being much larger than d. However, we still lack a good
understanding of the evolution of this spectrum in terms of
(n, k,d): for instance, larger n appears to amplify the larger
singular values and dampens the smaller ones (compare red
and blue curves).

While discussion so far focused on networks with one-hidden
layers, another outstanding question is on the role of depth.
Interestingly, depth appears to hurt the performance in very
recent results [2], [10] (i.e. they require larger network to
fit the data if there are multiple layers). We believe, this is
more than likely due to the sub-optimality of the analysis. An
improved understanding of when depth helps/hurts optimization
and generalization can further shed light on the success of deep
learning models.
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