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Abstract—The popularity of the ReLU has given rise to many
neural networks which are piecewise affine. In this work, we
show how a refined bound on the number of affine pieces in a
single ReLU layer can be used to lower bound the approximation
error of a ReLU network. We also demonstrate a method based
on Rademacher complexity and random sampling to give an
upper bound on the error of optimal approximations for these
layers.

I. INTRODUCTION

With the advent of the age of neural networks, much thought
has gone into understanding their power as function approx-
imators. The power of one-nonlinear-layer neural networks
serves as a good point of comparison against deep networks,
since the former can be seen as the fundamental building-
block of the latter. This comparison has caught the attention
of researchers who have succeeded in demonstrating functions
which are hard to represent with one nonlinear layer, but much
easier to represent with two nonlinear layers [1] [2] [3]. These
papers share a common thread in that they establish bounds on
the number of nodes needed for the approximation of specific
functions by one-nonlinear-layer networks. In this paper, we
provide bounds that apply not just for single functions, but
which have wide applicability. We show an upper bound of
the form ε ≈ 1/n2 for a broad class of functions, which we
obtain through a multidimensional analogue of a previously
known affine piece counting argument. Conversely, we show
a lower bound of the form ε ≈ 1/

√
n based on a probabalistic

sampling method.

II. SETTING

We consider functions on the unit ball in d dimensions, ap-
proximated under the uniform metric: For functions f , we seek
approximations f̃ that minimize ||f − f̃ || = sup|x|≤1 |f(x)−
f̃(x)| (This differs from previous work [1] [2] [3], which use
L2 spaces). Here f̃ is a neural network with one hidden layer.
That is, the function f̃ has the form

f̃(x) =

n∑
i=1

ReLU(〈vi, x〉+ bi)

where vi ∈ Rd, bi ∈ R. The number of nodes in the hidden
layer of the network is denoted by n.

In this paper, we will consider the regime where d is fixed,
and we optimize n and the uniform error. We will use fS to
denote the restriction of f to a subset S of its domain. We
will use m(S) to denote the Lebesgue measure of set S.

III. AFFINE PIECE COUNTING LOWER BOUND

Our lower bound theorem comes from a result of the authors
which describes the number of affine pieces in a network
based on the dimensionality of the input space [4, Lemma
2.1]. A univariate version of this lemma appeared in [6],
whereafter it was combined with strong convexity assumption
to prove a lower bound for deep networks [5]. Here, we use the
multivariate generalization to strengthen the convexity-based
lower bound proof in the case of shallow networks.

Theorem III.1. Let f be c-strongly convex on a convex subset
S of its domain. Then a one-nonlinear-layer network f̃ with
n nodes satisfies ||f − f̃ || ≥ O(1/n2).

Proof. We have (from Lemma 2.1 of [4]) that the domain of
a 1-nonlinear-layer network f̃ can be partitioned into NA ≤
(end + e)d convex pieces on which f̃ is affine. We therefore
have a subset S′ ⊆ S of measure m(S′) ≥ m(S)

NA
≥ m(S)

(en
d +e)d

contained in a single piece of this partition. Thus, fS′ is c-
strongly convex, and f̃S′ is affine, and from these facts we will
establish ||f − f̃ || ≥ ||fS′ − f̃S′ || = ε. Denote g = fS′ − f̃S′ .
Since g is the difference of a c-strongly convex function and
an affine function, g is c-strongly convex. Furthermore, g must
lie between [−ε, ε] on S′. These last two facts tell us that S′ is
contained within a ball of radius

√
4ε
c centered on argmin g,

since at this radius from the minimum of g, the value of g

has increased by at least 2ε. This ball has volume Vd
√

4ε
c

d

,
where Vd is the d-dimensional circle constant, so:

Vd

√
4ε

c

d

≥ m(S)

(end + e)d√
4ε

c
≥
(
m(S)

Vd

)1/d
1

(end + e)

ε ≥ c

4e

(
m(S)

Vd

)2/d(
d

n+ d

)2

= O(1/n2).

Note that the constant depends on the convexity parameter
c, the size of the convex domain m(S), and the dimension d
(which we are considering to be fixed).

This theorem can be applied to study a wide array of
functions. Any function with a positive definite Hessian at
some point x must be strongly convex in a neighborhood of



x. Thus, any smooth function with a local minimum must have
a O(1/n2) approximation rate lower bound. Some examples:

Corollary III.2. Let f : x 7→ e−|x|
2

on the unit sphere. A one-
nonlinear-layer network f̃ with n nodes satisfies ||f − f̃ || ≥
O(1/n2).

Proof. Since −f is strongly convex near 0, Theorem IV.1 can
be applied.

Corollary III.3. Let x 7→ |x|2 on the unit sphere. A one-
nonlinear-layer network f̃ with n nodes satisfies ||f − f̃ || ≥
O(1/n2).

Proof. While f is not strongly convex, we can restrict f to the
hyperplane H = {|x| < 1 : x1 = 1

2}. This restricted function
fH in d − 1 dimensions is smooth and has a minimum at
( 12 , 0, . . . , 0), so we can apply the theorem in this subspace.

IV. UPPER BOUND

Our upper bound technique comes from an application of
Rademacher complexity. For a function f , the technique first
involves determining a measure µf on the set of parameteri-
zations for a single ReLU {v ∈ Rd, b ∈ R} such that

f(x) = k

∫
ReLU(〈x, v〉+ b)dµf (v, b)

for a constant k. For example, in the case of the 2-norm
function f(x) = |x|2 =

√∑
i x

2
i , a measure µf = σ is

suitable, where σ is a distribution where v is uniform over
the unit sphere and b = 0. In general, for radial functions of
the form f(x) = g(|x|), where g is a polynomial, the density
function of µf can also be chosen to be radial, and is also a
polynomial. Thus, it is possible to produce µf for a wide array
of radial functions through approximation of Taylor series.

We simplify a bit and assume µf is a distribution (we can
use a Jordan decomposition of µf to make this rigorous):
over a selection of n draws (v1, b1), . . . , (vn, bn) from µf ,
the function

f̂ =
k

n

n∑
i=1

ReLU(〈x, vi〉+ bi),

which is representable as an n-node shallow network, should
approximate f as n→∞. We use a Rademacher complexity
argument to reason that

||f̂ − f || ≤ O

(√
ln(1/δ)

n

)
with probability 1− δ, where the constant depends on k. We
then instantiate this bound with a fixed δ and argue by the
probabalistic method that the optimal n-node approximation
to f satisfies

||f̂ − f || ≤ O

(√
1

n

)
.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have established lower and upper bounds
that can be applied broadly to the approximation of functions
by shallow networks. The lower bound and upper bounds
provided in the previous two sections are O( 1

n2 ) and O( 1√
n
)

respectively. Noting the gap between these asymptotics is
a power of 4, future work in this direction should include
tightening these asymptotic bounds to match each other.
Furthermore, we could expand our view to consider how the
dimension d impacts the constants in these bounds.
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