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Abstract—In this article we are going to discuss the conjecture
of Strohmer and Beaver for Gaussian Gabor systems. It asks
for an optimal sampling pattern in the time-frequency plane,
where optimality is measured in terms of the condition number
of the frame operator. From a heuristic point of view, it seems
obvious that a hexagonal (sometimes called triangular) lattice
should yield the solution. The conjecture is now open for 16 years
and only recently partial progress has been made. One point this
article aims to make, is to show up parallels to a long standing,
open problem from geometric function theory, Landau’s problem
posed in 1929, suggesting that the conjecture of Strohmer and
Beaver is a very deep mathematical problem.

I. INTRODUCTION

Gaussian Gabor systems have already been studied in the

setting of quantum mechanics by John von Neumann in 1932

[21], but their name originates from the 1946 paper of physics

Nobel laureate Dennis Gabor [12]. Gabor was looking for

a 2-dimensional representation of a one-dimensional signal

(function), providing information on the signal’s time and

frequency content at the same time. This idea leads to a

representation of a signal in a mixed time-frequency domain.

The aim of Gabor analysis is to expand a signal from the

Hilbert space L2(R) into a generalized Fourier series, similar

to the Fourier series expansion for functions in L2(T). Also,

the coefficients in the Fourier series should already provide

accurate information about the joint time-frequency content

of the signal.

Originating from this idea, a whole new field of (harmonic)

analysis has been developed – time-frequency analysis. This

field is a very active field of research in mathematics as

well as in engineering and has already come up with deep

mathematical problems, such as Feichtinger’s conjecture. It

was mentioned in print for the first time in 2005 in [6] and

turned out to be equivalent to the Kadison-Singer conjecture or

paving conjecture [15], which dates back to 1959. A (positive)

solution was finally given in 2015 by Marcus, Spielman and

Srivastava [20], turning the conjectures into theorems.

The aim of this article is to discuss in some detail another

conjecture from the field of time-frequency analysis, namely

the conjecture of Strohmer and Beaver on optimal Gaussian

Gabor frames [25], which appeared in print in 2003, and to

briefly describe (loose or deep) connections to a problem from

geometric function theory, posed by Landau in 1929.

II. GABOR SYSTEMS AND GABOR FRAMES

Before we can properly define a Gabor system, we need to

fix the notation and define some auxiliary tools first. We stick

close to the textbook of Gröchenig [13] with our notation.

We start with defining the inner product for the Hilbert space

L2(R). The inner product of two functions f, g ∈ L2(R) is

given by

〈f, g〉 =

∫

R

f g dµ,

where g is the complex conjugate of g and dµ denotes the

Lebesgue measure on R. The canonical norm induced by the

inner product is

‖f‖22 = 〈f, f〉.

In the sequel we will usually abuse notation and write out

the formulas for point-wise defined functions. The Fourier

transform of a function is given by

f̂(ω) =

∫

R

f(t)e−2πiωt dt.

The Fourier transform is unitary on L2(R), i.e., ‖f‖2 = ‖f̂‖2.

The fundamental operators in time-frequency analysis are the

translation (or time-shift) operator Tx and the modulation (or

frequency-shift) operator Mω. They act on functions by the

rules

Txf(t) = f(t− x) and Mωf(t) = f(t)e2πiωt.

The composition is called a time-frequency shift and denoted

by

π(λ) = MωTx, λ = (x, ω) ∈ R
2.

In general, time-frequency shifts do not commute, as already

the translation and modulation operator do not commute.

However, they fulfill the following commutation relation;

TxMω = e−2πixωMωTx. (1)



For a so-called window g ∈ L2(R) and an index set Λ ⊂
R

2, the collection of time-frequency shifted versions of g with

respect to Λ is called a Gabor system;

G(g,Λ) = {π(λ)g | λ ∈ Λ}.

The index set Λ is usually a discrete, relatively separated

subset of the time-frequency plane R2. In the so-called regular

case, the index set is assumed to be a lattice, which means that

it possesses a group structure. In this case, it can be represented

by an invertible matrix M and the columns of the matrix serve

as a basis for the lattice;

Λ = MZ
2.

Now, the idea is to expand a function f ∈ L2(R) into a

series of the form

f(t) =
∑

λ∈Λ

cλ π(λ)g(t) =
∑

(x,ω)∈Λ

c(x,ω)g(t− x)e2πiωt. (2)

A first example of a Gabor system, which actually constitutes

an orthonormal basis, is given by

G(χ[0,1),Z
2) = {χ[0,1)(t− k)e2πilt | (k, l) ∈ Z

2}.

This system consists of integer shifted copies of the Fourier

basis on the torus T = R/Z ∼= [0, 1) along the real line.

However, for various reasons, Gaussian windows are often

the preferred choice. One of the many preferable properties

of Gaussians is that they uniquely minimize the uncertainty

principle. The standard Gaussian window is given by

g0(t) = 21/4e−πt2 ,

where the factor in front is to normalize the Gaussian, i.e.,

‖g0‖2 = 1. Also, throughout this work we will always assume

that the window is normalized.

As stated earlier, the system G(g0,Z
2) was already studied

by von Neumann [21] and later again by Gabor [12]. As we

know now, this system is complete, but there is no stable way

to expand a signal into a series of type (2), meaning that the

coefficient sequence (cλ)λ∈Λ may not be square-summable

[18]. This is a manifestation of the Balian-Low theorem. In

order to obtain stable expansions of type (2), it is necessary

that G(g,Λ) forms a (Gabor) frame for L2(R).
A Gabor system G(g,Λ) is a frame for L2(R) if and only if

there exist positive constants 0 < A ≤ B < ∞, called frame

bounds, such that

A‖f‖22 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖22, ∀f ∈ L2(R). (3)

In case of the Gaussian (as well as for other “suitably nice”

functions), a Gabor system can only be a frame if it is

redundant (overcomplete). This is achieved by increasing the

(lower Beurling) density of the index set, which in case of a

lattice Λ = MZ2 is simply given by

δ(Λ) =
1

| det(M)|
.

In case of a Gaussian window, the necessary density con-

dition on the index set is already sufficient as proved in [17],

[23], [24]. In particular, a Gaussian Gabor system with lattice

Λ is a frame if and only if δ(Λ) > 1. The result actually holds

in a more general setting, namely for relatively separated point

sets with lower Beurling density greater than 1.

There is a natural operator associated to a Gabor system,

the frame operator;

Sg,Λf =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)g.

Its operator norm and the norm of its inverse are connected

to the optimal frame bounds in (3) in the following way;

‖Sg,Λ‖op = B and ‖S−1
g,Λ‖op = A−1.

The condition number of the frame operator is given by

cond(Sg,Λ) =
B

A
,

where A and B are the sharp frame bounds, depending on

the window g and the lattice Λ. Now, if the Gabor system

constitutes a frame, the frame operator is invertible and

the coefficients in (2) can, e.g., be computed by using the

canonical dual window g◦ = S−1
g,Λg;

f =
∑

λ∈Λ

〈f, π(λ)g◦〉π(λ)g.

III. THE CONJECTURE OF STROHMER AND BEAVER

Conjecture III.1 (Strohmer and Beaver). Consider the family

of Gaussian Gabor systems G(g0,Λ) with fixed lattice density

greater than 1, i.e., δ(Λ) > 1. Then, the condition number of

the associated family of frame operators, cond(Sg0,Λ) = B/A,

is minimal, if and only if

Λ = Λh = δ−1/2QMhZ
2

is a hexagonal lattice. Here, δ is the given density, Q is an

orthogonal matrix and

Mh =
√

2√
3

(
1 1

2

0
√
3
2

)
.

Considering the special case of rectangular (or separable)

lattices of the form

Λ(α,β) = αZ× βZ =

(
α 0
0 β

)
Z
2,

(αβ)−1 > 1 fixed, the square lattice (α = β) minimizes the

condition number of the frame operator.

In shorter notation, the main claim in Conjecture III.1 is

that

cond(Sg0,Λh
) ≤ cond(Sg0,Λ),

with equality if and only if Λ is another (rotated) version of

the hexagonal lattice.



A. Heuristic Arguments and Proof by Intimidation

For the heuristics, we first need to define the short-time

Fourier transform of a function f with respect to a window g;

Vgf(x, ω) =

∫

R

f(t) g(t− x)e−2πiωt dt = 〈f, π(λ)g〉,

with λ = (x, ω) ∈ R2. Now for f = g = g0, we get

Vg0g0(x, ω) = e−πixωe−
1
2π(x

2+ω2).

The function |Vgf |
2 is called the spectrogram of f with

respect to the window g and measures the time-frequency

concentration of f (with respect to g). In case of the Gaussian

we get

|Vg0g0(x, ω)|
2 = e−π(x2+ω2).

We see that this function is radial symmetric and most of its

energy is concentrated in a disc. Since the optimal way to

arrange discs in the plane is given by the hexagonal lattice,

the first guess is that this is also the optimal way to arrange

two-dimensional Gaussians (to be made precise below).

For g ∈ L2(R) and a lattice Λ ⊂ R2, we set

pg,Λ(z) =
∑

λ∈Λ

|Vgg(λ+ z)|2,

which is Λ-periodic in z. Then, for any window g with ‖g‖2 =
1, it follows from (3) that

A ≤ ess inf
z∈R2

pg,Λ(z) and ess sup
z∈R2

pg,Λ(z) ≤ B

by considering not all f ∈ L2(R), but only all possible time-

frequency shifted windows π(z)g, z ∈ R2. Now, the conjecture

of Strohmer and Beaver on the smallest condition number is

implied by the following, stronger conjecture.

Conjecture III.2. For fixed density δ, the lower frame bound

of the Gaussian Gabor system G(g0,Λ) is uniquely maximized

by the hexagonal lattice and the upper frame bound is uniquely

minimized in this case.

Also, for fixed density δ, for the separable (or rectangular)

Gaussian Gabor system G(g0, αZ × βZ), (αβ)−1 = δ, the

lower frame bound is uniquely maximized and the upper frame

bound is uniquely minimized if and only if α = β = δ−1/2.

For special densities, the separable case in Conjecture III.2

was proven in 2017 [11]. More recently, for special densities

it was proven in [8] that the hexagonal lattice uniquely

minimizes the upper frame bound. The only problem in

Conjecture III.2 which is open for all densities is the problem

of maximizing the lower frame bound among all lattices.

Furthermore, we note that for δ(Λ) ∈ 2N, the sharp frame

bounds of the Gabor system G(g0,Λ) are given by (see [9],

[14])

A = ess inf
z∈R2

p̃g0,Λ◦(z) and B = ess sup
z∈R2

p̃g0,Λ◦(z), (4)

where p̃g0,Λ◦ is the following Fourier series with Gaussian

coefficients;

p̃g0,Λ◦(z) = δ
∑

λ◦∈Λ◦

e−
π
2 |λ◦|2e2πiσ(λ

◦,z),

where σ(λ◦, z) = λ◦
1z2 − λ◦

2z1 is the standard symplectic

form, δ is the lattice density and Λ◦ = δΛ is the adjoint

lattice. Concluding from (4), a first step towards a solution of

Conjecture III.2 would be to see whether, for any density, the

Λ-periodic function pg0,Λ◦(z) assumes its largest minimum

and its smallest maximum for the hexagonal lattice, which

results in a problem for the heat kernel on a family of two-

dimensional tori.

We note that, by the Poisson summation formula and the

special choice of the window being g0, we can connect

p̃g0,Λ◦ to the function pg0,Λ and the optimality problem for

2-dimensional Gaussians. It is actually not hard to show, by

using the triangle inequality, that for any lattice Λ◦ we have

p̃g0,Λ◦(z) ≤ p̃g0,Λ◦(0).

The result of Montgomery on minimal theta functions [19]

states that for fixed lattice density δ

p̃g0,Λ◦

h
(0) ≤ p̃g0,Λ◦(0)

with equality if and only if Λ◦ is another hexagonal lattice.

For δ ∈ 2N fixed, this is equivalent to the result that the

upper frame bound is minimal if and only if the lattice is

hexagonal [8]. Without going into the details, we note that the

commutation relations (1) are the reason why we only get the

equivalence for even lattice densities.

If one could show that, for any δ the minimum of p̃g0,Λ◦

is maximal if and only if the lattice is hexagonal, Conjecture

III.2 would be proved for even lattice densities, implying that

the conjecture of Strohmer and Beaver is true for even lattice

densities. A major issue is that locating the minimum is not

as easy as locating the maximum and, furthermore, numerical

investigations show that the location of the minimum also

depends on δ (see also [2]).

We close this section with the promised “proof” of the

Strohmer and Beaver conjecture by intimidation.

(Claim): We claim that Conjecture III.2 is true and, hence,

for fixed lattice density the condition number of a Gaussian

Gabor frame operator is minimal only for a hexagonal lattice.

(“Proof”): Which other lattice should yield the minimal

condition number? �

IV. EXTREMAL GEOMETRIES

We start this section with the celebration of the 90th

birthday of a theorem and a related open problem by Landau

[16], stated in 1929.

Theorem IV.1 (Landau, 1929). Let f : D → C be a

holomorphic map from the open unit disc D to the complex

plane C with the property |f ′(0)| = 1. Then, there exists an

absolute constant L > 0 such that an open disc DL of radius

L is contained in the image of f(D).

Landau’s problem is to find the exact value of the constant

L, which can be defined in the following way;

ℓ(f) = sup{r ∈ R+ | Dr ⊂ f(D), f as in Theorem IV.1},

L = inf{ℓ(f) | f as in Theorem IV.1}.



We note that the problem of finding the exact value of L is

invariant under translation and rotation, just as the problems

stated in Conjecture III.2. We have the following estimates on

L;

1

2
< L ≤ L+ =

Γ
(
1
3

)
Γ
(
5
6

)

Γ
(
1
6

) = 0.543259 . . . .

The value for L+ was established in 1943 by Rademacher [22],

who also mentioned that the same value was already derived

by Robinson in 1937, but this work was not published. The

value L+ was derived by constructing (and properly scaling)

the universal covering map φ of a once-punctured hexagonal

torus. The once-punctured hexagonal torus can be identified

with the complex plane minus a hexagonal lattice Λh;

T
2
h
∼= C

∖
Λh.

The map φ is constructed as follows.

(a) Tessellation of the unit
disc with hyperbolic trian-
gles.

φ
−−−−−→

(b) Tessellation of the plane
with Euclidean triangles.

Fig. 1. Constructing the map φ.

One starts with a map φ0, mapping the unit disc to a

hyperbolic equilateral triangle. As a second step, in the same

manner one constructs a map φ1/3 from the unit disc to a

Euclidean equilateral triangle. By composing the inverse map

φ−1
0 with the map φ1/3 one maps the hyperbolic triangle to

the Euclidean triangle. Finally, the map φ is constructed by

using successive reflections in the unit disc (with the Poincare

metric) and the plane, yielding a universal covering map of

C
∖
Λh. The points in Λh become branching points of infinite

order and, hence, φ is not holomorphic at these points. The

largest disc that can be placed in C
∖
Λh is the circumcircle of

the constructed Euclidean triangle. The process of constructing

this universal covering map φ is illustrated in Figure 1.

By only considering universal covering maps of rectangular

tori, the expected solution to the rectangular Landau problem

is, of course, given by (scaling) the universal covering map Φ
of the once-punctured square torus T

2 ∼= C
∖
Z
2, illustrated in

Figure 2. Note that the described mappings are not one-to-one.

The rectangular problem was investigated in [1] and [7]. The

conjectured exact value of the rectangular Landau constant is

L� =
Γ
(
1
2

)
Γ
(
3
4

)

Γ
(
1
4

) = 0.59907 . . . . (5)

(a) Tessellation of the unit
disc with hyperbolic squares.

Φ
−−−−−→

(b) Tessellation of the plane
with Euclidean squares.

Fig. 2. Constructing the map Φ.

The sharp frame bounds of Gabor systems with the standard

Gaussian window g0(t) = 21/4e−πt2 and the hexagonal and

square lattice of density 2 have been computed in [8]. The

exact values of the lower frame bound of the Gaussian Gabor

frame for the hexagonal and square lattice are

A = 2
∑

k,l∈Z

e
−π

2√
3
(k2+kl+l2)

e
2πi

(

k
3− l

3

)

= 1.84074 . . . ,

A = 2
∑

k,l∈Z

e−π(k2+l2)e
2πi

(

k
2− l

2

)

= 1.66925 . . . ,

respectively. For more details on how to compute sharp frame

bounds for certain (integer) densities, we refer to [9] and [14].

By using results going back to Ramanujan and Gauss, it is

shown in [10] that

A = L−1
�

and A = L−1
+ . (6)

We will sketch the proof of (6) for A, which uses Gauss’

hypergeometric function 2F1 and its connection to the Gamma

function, established by Gauss, as well as the connection to

theta functions, established by Ramanujan. For details we refer

to the textbook of Berndt [3, Chap. 17].

First, note that A is expressible by means of Jacobi’s theta

functions;

A = 2 θ4(i)
2, where θ4(τ) =

∑

k∈Z

(−1)keπiτk
2

,

(7)

with τ ∈ H, the upper half plane. Also, for the square lattice

of density 2 the upper frame bound, we denote it by B, is

expressible in a similar manner in terms of theta functions;

B = 2 θ3(i)
2, θ3(τ) =

∑

k∈Z

eπiτk
2

, τ ∈ H.

Furthermore, we have

θ4(i)
4

θ3(i)4
=

1

2
, (8)

which is a well-known result (note that the value in (8)

yields the inverse of the squared condition number). Next, we

introduce Gauss’ hypergeometric function 2F1;

2F1(a, b; c; z) =

∞∑

k=0

(a)k (b)k
(c)k

zk

k!
, for |z| < 1.



For a number w ∈ C and k ∈ Z, (w)k denotes the rising

factorial, which is given as the ratio of Gamma functions;

(w)k =
Γ(w + k)

Γ(w)
.

Gauss established the result

2F1

(
a, b; 12 (1 + a+ b); 1

2

)
=

Γ(12 )Γ(
1
2 (1 + a+ b))

Γ(12 (1 + a))Γ(12 (1 + b))
, (9)

and Ramanujan found the connection

2F1

(
1
2 ,

1
2 ; 1; 1−

θ4(τ)
4

θ3(τ)4

)
= θ3(τ)

2. (10)

Combining equations (5), (7), (8), (9) and (10) finally leads to

the first equality in (6). For further reading and more details

we refer to [10] and the references therein.

The result for A follows in a similar manner by using

Ramanujan’s “corresponding theory” [4, Chap. 33] and cubic

analogues of Jacobi’s theta functions [5].

Finally, we note that the problem of finding the exact

value of Landau’s constant and maximizing the lower frame

bound heuristically have a lot in common. Both problems

are invariant under translation and rotation and in both cases

we fix a characteristic number. For Landau’s problem it is

the modulus of the derivative at the origin and in Conjecture

III.2 it is the density of the lattice. Also, Landau’s problem

can be reduced to a problem for discrete subsets of C [2].

So, if f is a universal covering map of C\Λ and Λ allows

place for a large disc, so-to-say has a large hole, then the

Gabor system G(g0,Λ) cannot have a large lower frame bound

as one can find a function (e.g. a time-frequency shifted

Gaussian) essentially concentrated in this hole. Therefore, for

this particular function the middle expression in the frame

inequality (3) will be small, forcing the lower frame bound to

be small.

The given heuristic arguments together with (6) suggest that

the conjecture of Strohmer and Beaver seems to be a rather

deep mathematical problem. Also, we note that in Theorem

IV.1 we can easily replace the assumption |f ′(0)| = 1 by

|f ′(0)| = K , K > 0, as the scaling constant K enters the

problem linearly. This means that the problem is invariant

under scaling and a solution for K = 1 already gives a solution

for any K ∈ R+. On the other hand, if we solved the lower

frame bound problem in Conjecture III.2 for density δ = 2,

it is not clear that we already solved the problem for any

δ > 1. From this point of view, solving Conjecture III.2 in

full generality might be even harder than solving the Landau

problem.
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