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Abstract—In this article I present some of my recent research
on scaling limits in two-dimensional eigenvalue ensembles.

I. BACKGROUND

The infinite Ginibre ensemble provides the simplest example
of a scaling limit of a two-dimensional random eigenvalue
process. Another type of determinantal point field appears if
we zoom at a boundary point as in Figure 1. The law of
the limiting process is determined by Forrester-Honner’s erfc-
kernel.

In recent years, various types of determinantal point-fields
appearing in similar ways, as scaling limits of normal eigen-
value ensembles have been identified and investigated, and a
general theory is emerging. I will give a glimpse into these
developments, as given for instance in [2], [3], [4], [5] and
references.
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Fig. 1. A sample from the Ginibre ensemble, rescaled about a boundary point.

II. BASIC SETUP

We begin with recalling the model. Fix a suitable external
potential Q : C → R ∪ {+∞}, a number β > 0, and a
large integer n. The corresponding Coulomb gas is an n-point
configuration {ζj}n1 picked randomly with respect to the Gibbs
distribution

dP(β)
n = (Z(β)

n )−1 e−βHn dVn,

Hn =
∑
j 6=k

log
1

| ζj − ζk |
+ n

n∑
j=1

Q(ζj).

The normalizing constant Z(β)
n is called the partition function;

’dVn’ is suitably normalized Lebesgue measure on Cn. The
Ginibre ensemble corresponds to Q(ζ) = |ζ|2.

Given suitable conditions on Q, the system {ζj}n1 tends to
follow the equilibrium measure σ in external potential Q, in
the sense that 1

nE
(β)
n (f(ζ1)+ · · ·+f(ζn))→ σ(f) as n→∞,

for each continuous bounded function f . If Q is smooth in a
neighbourhood of suppσ, then σ is absolutely continuous and
of the form dσ = ∆Q · 1S dA where S := suppσ is called
the droplet. (Here ∆ = ∂∂̄ and ’dA’ is the Lebesgue measure
in the plane divided by π.)

The droplet depends on the potential in a nontrivial way, and
can be characterized by means of the solution to an obstacle
problem. It is well-known that the droplet corresponding to
a smooth potential can be highly irregular. However, if the
potential is real-analytic in a neighbourhood of the boundary
∂S, then this boundary is the union of finitely many real-
analytic arcs, possibly with finitely many singular points of
certain types, see Figure 2.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

Fig. 2. Left: a droplet with one double point and one cusp on its boundary.
Right: a boundary with a crossing point.

III. DETERMINANTAL PROCESSES

The special choice β = 1 plays a particular role. In this case,
the process {ζj}n1 is determinantal, making Bergman space
techniques available. More precisely, a correlation kernel Kn

can be constructed as the reproducing kernel for the space of
weighted polynomials w = qe−nQ/2 (degree q ≤ n) endowed
with the topology of L2(C), by Kn(ζ, η) =

∑
wj(ζ)w̄j(η)

where {wj} is an orthonormal basis.
Until recently, little was known in the way of general

asymptotics of weighted orthogonal polynomials of this kind.
However, there has now been progress in this direction due
to the work of Hedenmalm and Wennman [8]. Furthermore,
for certain important special ensembles, the technique of



Riemann-Hilbert problems has been applied, giving a very de-
tailed information about orthogonal polynomials, and leading
to new insights.

Now fix a (perhaps n-dependent) point p ∈ S and rescale
via zj = r−1n (ζ − p), where rn, the ’microscopic scale’, is
typically chosen to be proportional to 1/

√
n∆Q(p). (We use

a coarser scale if ∆Q(p) = 0.) Thus the rescaled system {zj}n1
is obtained by placing the origin at p and blowing up distances
by a factor const.

√
n.

The structure of weighted polynomials enables us to apply
compactness arguments to prove existence and basic qualita-
tive properties of limiting point fields {zj}∞1 , see [3], [4],
[5]. It is important to note that such a point field is uniquely
determined by its one-point intensity function R(z), which has
the meaning of expected number of particles zj per unit area
at a point z ∈ C.

A glance at Fig. 1 indicates that, for the Ginibre ensemble,
we get very different results when we zoom on a bulk point or
at a boundary point. The question of universality of the latter
kernel, at regular boundary points of a droplet, was studied
at length in [3]. The problem was later solved in a rather
satisfactory generality in [8].The techniques in [3] and [8] are
in a way complementary. In [5] they are combined to prove
a kind of central limit theorem for log |pn(ζ)| where pn is
the characteristic polynomial of a random normal matrix with
respect to an ’algebraic potential’.

IV. WARD’S EQUATION

A principal tool behind our approach is Ward’s identity (or
the loop equation). This is an exact relation connecting the 1-
and 2-point functions of a β-ensemble. In the present context,
it was used systematically by Wiegmann and Zabrodin and
their school [6].

The one-dimensional counterpart to Ward’s identity has
been used, for example, in the influential paper [9] to study
fluctuations in one-dimensional β-ensembles. It should how-
ever be noted that the Ward identities in dimension 1 and 2
are quite different from one other, analytically speaking.

Rescaling in Ward’s identity, we obtain Ward’s equation,
which has the formal appearance

∂̄C = R− 1− 1

β
∆ logR. (1)

Here R is the 1-point function of a limiting point process and
C is a certain related function, which is determined by the 1-
and 2-point functions of a limiting ensemble.

Our program for studying this equation is easiest to describe
in the case β = 1, because then C is determined by R in
the following way. The correlation kernel K of the limiting
determinantal process is determined by its diagonal values
K(z, z) = R(z), and provided that R does not vanish
identically we have

C(z) =

∫
C

1

z − w
|K(z, w)|2

R(z)
dA(w).

As a consequence, Ward’s equation (1) can be regarded
as a ’closed’ equation for the single unknown function R.

Moreover, the kernel K can be shown to be the reproducing
kernel of some contractively embedded subspace of a Fock-
type space of weighted entire functions, encoding the local
properties of the ensemble near the point p. In this way,
we can interpret properties of our limiting point fields as
statements about Hilbert spaces of entire functions. By contrast
to the situation in Hermitian random matrix theory, the present
spaces are not of de Branges type, but rather of Fock type.

In order to single out a particular solution R, we need
additional information (e.g. decay properties) depending on
the nature of the point we are zooming at. In the simplest
case, when we zoom at a regular bulk point, it is not very
hard to show that R(0) = 1. Using Ward’s equation we can
show that this implies R ≡ 1, which means that the limiting
point field is just the infinite Ginibre ensemble.

pn

δn

1

Fig. 3. Rescaling about the moving point pn

V. TRANSLATION INVARIANT SOLUTIONS

Let us now assume that we are zooming on a moving point
pn approaching a cusp as in Figure 3. Here pn is the point
inside the droplet which is closest to the cusp, subject to the
condition that the distance δn of pn to the boundary is kept
proportional to 1/

√
n. Observe that the rescaled droplet in this

case will look like a strip, whence it is very reasonable to look
for solutions R which are translation invariant, i.e., invariant
with respect to translations that preserve the strip. Given the
assumption of translation invariance, Ward’s equation can be
reduced to a convolution equation, which in turn is completely
solved using harmonic analysis in [3]. In fact, the general
translation invariant solution is given by a convolution between
a Gaussian and the characteristic function of an interval (or
’window’). See Fig. 4 for some density profiles (graphed w.r.t.
a cross-section of the strip) obtained in this way, for various
choices of width of the strip.
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Fig. 4. Density profiles of translation invariant processes.

A parallel theory emerges by considering ensembles {ζj}n1
with a hard edge confinement, i.e., when no particle is allowed
to enter the complement of the droplet S. This is accomplished
by redefining the potential Q to be +∞ outside of S. Figure 5
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Fig. 5. Density profiles of translation invariant processes with hard edge
confinement.

shows the density profiles of some hard edge point processes
in strips of different widths.

It seems fair to say that the above indicated method solves
the question of identifying limiting point fields near cusps
on a ’physical’ level. From a mathematical point of view,
we must rigorously rule out the possibility of non translation
invariant solutions to Ward’s equation, which turns out to be a
subtle matter. Without the assumption of translation invariance,
Ward’s equation becomes a (nonlinear) twisted convolution
equation which is not yet fully understood, cf. [3, Section
8.3] and [7].

VI. SINGULARITIES IN THE BULK

Other situations occur when we rescale about singular points
of different kinds, e.g. points in the bulk where the equilib-
rium density vanishes, and/or a conical singularity where the
geometry degenerates. In these cases, Ward’s equation takes
on different forms, depending on the local behaviour of the
Laplacian ∆Q near the singular point. When this behaviour is
(asymptotically) rotationally symmetric, we obtain rotationally
symmetric limiting point fields of the Mittag-Leffler type, see
[5]. In the case of general bulk singularities, the density is
believed to be expressible in terms of the Bergman kernel of
a certain Fock-Sobolev space of entire functions.
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Fig. 6. Density profiles of some Mittag-Leffler type fields (in blue).

VII. FURTHER EXAMPLES OF PLANAR POINT FIELDS

The weakly Hermitian ensembles are a family of processes
that are concentrated near the real axis, and which interpolate
in a natural way between 2-dimensional processes (such as
the infinite Ginibre) and 1-dimensional ones (such as the sine-
process). Cf. [1] and references.

The lemniscate ensembles are obtained by rescaling about
a singularity of the lemniscate type, as in Fig. 2. Fig. 6 shows
some numerically computed level curves of the rescaled one-
point density R(z) about the singular point. (Explicitly, the
potential is Q(ζ) = |ζ|4 −

√
2 Re(ζ2) and the droplet is the

domain enclosed by the lemniscate |ζ2−1/
√

2| = 1/
√

2 which

has a two-fold crossing point at the origin. Cf. [4] for more
in this connection.)

Another kind of point field is obtained by inserting a point
charge of strength c at a boundary point of the droplet and
studying the conditional process, for which eigenvalues are
repelled in a nontrivial way from this point, see Fig. 8. In this
case, a Dirac point mass of strength c enters Ward’s equation,
which must now be interpreted in a distributional sense.

Fig. 7. Level curves of the density of a lemniscate field of order 2. The picture
uses an approximation by the 1-point function corresponding to n = 600
particles.

Fig. 8. Local density of a Ginibre process conditioned on insertion of a
repelling charge at a boundary point.
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