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Abstract—In this paper, we survey our joint work on the point
processes formed by the zeros of time-frequency transforms of
Gaussian white noises [1], [2]. Unlike both references, we present
the work from the bottom up, stating results in the order they
came to us and commenting what we were trying to achieve.
The route to our more general results in [2] was a sort of ping
pong game between signal processing, harmonic analysis, and
probability. We hope that narrating this game gives additional
insight into the more technical aspects of the two references. We
conclude with a number of open problems that we believe are
relevant to the SampTA community.

Index Terms—time-frequency/time-scale analysis, white noise,
spectrogram zeros, point process

I. INTRODUCTION

Spectrograms are a cornerstone of time-frequency analysis
[3]. They are quadratic time-frequency representations of a
signal [4, Chapter 4], associating to each time and frequency
a real number that measures the energy content of a signal
at that time and frequency, unlike global-in-time tools such
as the Fourier transform. Since it is natural to expect that
there is more energy where there is more information or
signal, most methodologies have focused on detecting and
processing the local maxima of the spectrogram; see e.g. [3].
Usual techniques include ridge extraction, e.g., to identify
chirps, reassignment and synchrosqueezing, to better localize
the maxima before further quantitative analysis.

In contrast, Patrick Flandrin has recently observed [5] that
the locations of the zeros of a spectrogram in the time-
frequency plane almost completely characterize the spectro-
gram, and he proposed to use the point pattern formed by the
zeros in filtering and reconstruction of signals in noise. This
proposition stems from the empirical observation that the zeros
of the short-time Fourier transform (STFT) of white noise are
uniformly spread over the time-frequency plane, and tend not
to cluster, as if they repelled each other. In the presence of a
signal, zeros are absent in the time-frequency support of the
signal, thus creating large holes that appear to be very rare
when observing pure white noise. This leads to testing the
presence of signal by looking at statistics of the point pattern
of zeros, and trying to identify holes.
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When we first heard of [5], we were working on Monte
Carlo integration with repulsive point processes [6]. More
precisely, we were working on orthogonal polynomial en-
sembles, a family of determinantal point processes (DPPs).
Loosely speaking, a point process is a random discrete set of
points. DPPs were introduced by Odile Macchi in 1975 [7] as
models for physical beams of fermions. They are particularly
tractable repulsive point processes parametrized by a kernel,
and their analysis crucially involves reproducing kernels [8].
The similarity of this mathematical backbone of DPPs with
the analytical tools behind time-frequency analysis [4] made
us conjecture that the point process formed by the zeros
of the STFT of white Gaussian noise was a DPP. As we
explain in Section II, this is not the case. However, once all
the maths were laid out to characterize the zeros of random
spectrograms, we realized that we could have obtained a
well-known DPP if we had considered the analytic wavelet
transform of [9] instead of the STFT; this is Section III.
Then again, we recognized the key role implicitly played by
generating functions of orthogonal polynomials. This allowed
us to further generalize our results on the identification of zeros
to more time-frequency transforms; see Section IV. Finally, we
discuss open questions for the SampTA audience in Section V.

II. FROM THE STFT TO THE PLANAR GAF

Let f € L?(R) and g be the pdf of a centered Gaussian,
with variance normalized so that ||g||o = 1. The evaluation at
(u,v) € R? of the short-time Fourier transform (STFT) of f
with Gaussian window ¢ reads

Vo f(u,v) = / f()g(t —u)e”?™dt = (f, M,T,g), (1)

with (-,-) denoting the inner product in L?(R), M,f =
e f(-) and T, f = f(- —u).

Our first step was to rigorously define the STFT of complex
white Gaussian noise (WGN), in a manner that both satisfied
the intuition we may have of white noise, and allowed us to
speak of the zeros of the spectrogram. In [1, Section 3.1], we
used a classical definition of real WGN as a random tempered
distribution with Gaussian characteristic function. A complex
WGN ¢ is then defined as having independent white Gaussian
noises &1,&> as its real and imaginary parts.



This allowed us to pointwise compute (&, M,T,g) since
M,T,qg is smooth. By pointwise, we mean for a given time
u and frequency v. Then in [1, Proposition 3], we stitched all
these pointwise evaluations together and concluded that with
probability 1 on the white noise, the zeros of the function

z=u+iv— & M,T,9)

are those of the entire function
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where aj, = ((£1, hy) + (€2, hi))/V/2 are ii.d. unit complex
Gaussians, and hj are the Hermite functions. To read the
current paper, it is enough to know that Hermite functions
are a basis of L?(R) built using orthogonal polynomials with
respect to the Gaussian g.

All the above was the formalisation of the following heuris-
tic. A complex WGN should have unit complex Gaussian
coefficients in any basis of L?(R). Among such bases, we
pick the Hermite basis, because Hermite functions essentially
map to complex monomials through the STFT [4]. We thus
expect an analytic function of the form (2) as the STFT of &.

Identifying the zeros of the STFT of white noise with
the zeros of a random entire function on the time-frequency
plane is satisfactory, since entire functions have isolated zeros.
It thus makes sense to speak of the point process of the
zeros. Furthermore, the zeros of (2) are actually a well-studied
stationary point process [10], called the zeros of the planar
Gaussian analytic function (GAF), of which we show a sample
in Figure 1. Combining known probabilistic results on this
point process and standard statistical methodology for spatial
point processes, we obtained in [1, Section 5] powerful signal
detection procedures that strengthen the seminal work of [5].
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Fig. 1. White dots are a sample zero set of the planar GAF, superimposed on
a Charlier spectrogram, see [2] for the definition of the Charlier transform.

To conclude, one can show [10, Section 5.1] that the zeros of
the planar GAF are not a DPP with Hermitian kernel. Strictly
speaking, they could still be a DPP with a nonhermitian kernel.

III. FROM A DPP TO ANALYTIC WAVELETS

We were slightly frustrated of not finding a well-known
DPP behind the STFT of white noise in [1]. In particular, for
a > —1, consider the random analytic function
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where the a; are again i.i.d. unit complex Gaussians. The
series (3) defines the so-called hyperbolic GAF [10]. When
a = 0, it simply reads > az" and its zeros are a DPP.
A natural' question is then: what signal processing problem
should we have tried to solve in order to end up with the zeros
of the hyperbolic GAF instead of the planar GAF? The gamma
coefficients made us think of replacing Hermite functions by
Laguerre functions, and insight from Patrick Flandrin helped
us connect to the analytic wavelet transform. As we shall now
see, this backward reasoning turned out to be mathematically
valid and was the starting point of our next work [2].

The same heuristic as in Section II holds: we need a basis
of some Hilbert space of signals, a white noise that can be
decomposed onto that basis, and a time-frequency transform
that sends elements of the basis onto the right monomials.

A. The space of signals

Laguerre functions are a basis of L?(IRy) built using the
orthogonal polynomials with respect to the pdf of a gamma
random variable. Thus, we are looking for a space of signals
where the half-line R plays a role. A natural® example is the
space of “analytic” signals

H*(R) = {f € L*(R,C) : Supp(f) C R:}.

The inverse Fourier transforms (fj;) of the Laguerre functions
form a basis of H2(R).
B. The time-scale transform

Now, we need a transform that maps the basis (fi) to
monomials. Let § > —1/2 and set

Lt
(t+1)8’

The Fourier transform of 15 is essentially a gamma pdf

wg(t) = teR.
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so that 73 is intuitively a fine window if we want to use

Laguerre calculus in the Fourier domain. The Daubechies-Paul
wavelet transform of f € H?(R) is defined as

WBf(“H 5) = <f7 TuDs¢B>, (4)

where u € R and s € R’ are thought of as time and scale,
T f(t) := f(t —u) and D, f(t) := s~ /2f(t/s) are the usual
translation and dilation operators.
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T At least to DPP aficionados.
2this time, to signal processing fans!



We show in [2, Theorem 2.3] that for f € H*(R) and up
to a nonvanishing term,

Wi f(—u,s) o< L flo(u+is)), ©)

where u + is € C4 is in the time-scale half-plane, ¢(w) :=

(2w —1)/(2w+1) is a conformal mapping from C. to D, and

f]D()’B ) is a transform that precisely sends the inverse Fourier

transforms of the Laguerre functions onto the right monomials

F(k+2,8+1)zk ©)
k!

Everything is in place but the white noise. Heuristically,
if we were able to somehow decompose a white noise &
on H*(Ry) as Y, < axfk. Where aj, are ii.d. unit complex
Gaussians, then (5) and (6) should help us conclude that

k>0

L f(z) =

Wgé(2)

up to nonvanishing terms. This would characterize the zeros
of the analytic wavelet transform of white noise.

C. The white noise

The series Y, -, ax fi almost surely diverges in H*(R). To
remedy this, we follow [11] in his formalization of abstract
Wiener spaces. First, we define a slightly weaker norm on
H?(R) that ensures the series converges

2 ._
1115 =2 = sz g ()
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Indeed, it follows that
> fk => 1‘5’“‘;2 <o as. ®)
keN keN +

since the right hand 51de has finite expectation. Now define ©
as the completion of H?(R) for the norm (7). Leonard Gross’
construction [11] then gives a unique probability measure on
O, called white Gaussian noise, such that

/@eix(%(dg) o linal®/2

where ©* is the topological dual of © and hy, € H?(R)
is associated to A € ©* C H?(R) by Riesz’ representation
theorem. Equation (9) is to be interpreted as specifying the
Fourier transform of the white noise on H2(R). In particular,
it leads to Y ay f converging almost surely in © to u, which
is our goal. We can even give rates of convergence [2, Section
5]. We also note in passing that y is a rigorous definition of
an analytic white noise.

With the white noise now defined, we prove in [2, Theorem
2.3] that fm()ﬁ )f can be unambiguously defined as a random
analytic function in the unit open disk D. Furthermore, it is
equal in distribution to G/—\FS ? In particular, the case § =0
yields zeros that are a DPP! A sample of this DPP obtained as
the numerical zeros of a Paul-Daubechies scalogram is shown
in Figure 2.
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Finally, we note that Abreu, Haimi, Koliander, and Romero
[12] have also independently proved that the zeros of Wg§
are the zeros of the hyperbolic GAF, with a slightly different
definition of white noise.

IV. THE GENERAL PATTERN

Having extended the STFT case to the analytic wavelet
transform, we then realized that the mathematical construction
in Section III was much more general than these two cases.
The whole idea is to first fix a Hilbert space H of signals, fix
an orthonormal basis (f) of #, and complete H into © as
in Section III-C, so as to be able to define a white Gaussian
noise on O. Then pick a sequence (¥j)ren of holomorphic
functions on a domain A satisfying

sup Z | Wy (2)]? < 00 (10)
K ken
for any compact K C A, and define . acting on H as
(o)
ZLF(2) =D (fr: HUi(2),  z€A (11)
k=0

In signal processing terms, the signal f € # is analyzed by .2
in the basis ( fx), and reconstructed as an analytic function on
A using the dictionary Wj. Note that dominated convergence
allows us to rewrite .Z in kernel form,

ka W

The construction of white noise in Section III-C guarantees
that .Z extends uniquely to © and that .Z¢ has the same law
as the GAF > a;¥y; see our generic [2, Theorem 3.4].

The STFT with Gaussian window and the analytic wavelet
transform of [9] are particular cases of ., where the represen-
tation (12) is provided by identities for the generating func-
tions 7" of classical orthogonal polynomials. This prompted us
to plug other generating functions for orthogonal polynomials
as kernels, and check whether the resulting transform had a
time-frequency/scale interpretation.

Discrete orthogonal polynomials, for instance, lead to dis-
crete transforms, that result in a transform of WGN that is
either the planar (2), the hyperbolic (3), or the spherical GAF

ng,/( >zk,z€(c. (13)

We plot in Figure 3 a sample of the spherical GAF and its
zeros, mapped onto a sphere through stereographic projection.
This rendering highlights the invariance of the set of zeros to
isometries of the sphere, just like the zeros of the planar and
hyperbolic GAFs are invariant to isometries of the plane and
the Poincaré half-plane, respectively.

These discrete time-frequency transforms are not discrete
approximations of either the STFT or the analytic wavelet
transforms, yet they preserve the distribution of the zeros of the
corresponding spectrograms. If zeros end up competing with
maxima in signal processing practice, these discrete transforms

12)
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Fig. 2. White dots are a sample zero set of the hyperbolic GAF, superimposed on an analytic scalogram of an analytic white noise.

Fig. 3. White dots are a sample zero set of the spherical GAF, superimposed
on a Krawtchouk spectrogram, see [2] for definitions.

may be of computational interest. Indeed, they remove the
need to discretize continuous Fourier transforms.

V. OPEN ISSUES

On the unicity of GAFs. There are some fundamental
limitations to the correspondence between GAFs and time-
frequency transforms. The three GAFs we introduced — planar,
hyperbolic, and spherical — are canonical in the sense that
they are the only GAFs that are invariant to isometries of
the complex plane, the Poincaré half-plane, and the sphere.
From a statistical point of view, such invariances are crucial,
as they make the point process of the zeros stationary and
allow estimating function statistics [1, Section 5]. Extending
the correspondence will require either more exotic geometries,
or dropping the Gaussian/analytic aspects on the GAF side.

On the unicity of TF transforms. Another point in favour
of removing analyticity is that the Gaussian window is the only
window that makes the STFT map L?(R) to analytic functions
[13]. The analytic wavelet transform of Section III plays the
same unique role among continuous wavelet transforms [14].

Nevertheless, our discrete transforms in [2] do bypass this
limitation while still mapping to analytic functions.

Beyond orthogonal polynomials. The transforms that we
discussed in this paper are related to orthogonal polynomials.
However, we could easily generalize to other bases of L2,
provided that we can associate them with a dictionary (¥y)
of holomorphic functions such that the kernel (12) makes sense
for time-frequency/scale analysis.

On maxima. We briefly discuss local extrema of the STFT
of white noise in [2, Corollary 2.8], and we show that they
are the zeros of a GAF, although this is not the planar GAF,
so that local extrema do not form a stationary point process. It
seems as if zeros have more structure, which is an argument
in favour of using them in filtering as suggested by [5], but a
more thorough study of maxima is needed.
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