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Abstract—We propose a methodology that detects signal com-
ponents of a signal in white noise based on a hyperbolic
triangulation of its wavelet transform (WT). The theoretical
background is a connection between analyticity inducing wavelets
and Gaussian analytic functions. This relation allows us to obtain
some useful details on the random distribution of the zeros of
the wavelet transformed signal. We apply our method to some
acoustic signals and observe that many signal components are
found but as predicted by the theory there is no guarantee to
find all signal components.

Index Terms—Wavelet transform, hyperbolic geometry, Gaus-
sian analytic functions

I. INTRODUCTION

Identifying important components of signals embedded in a

noisy background is a fundamental problem in signal analysis.

A prevalent viewpoint is that these important components

correspond to high-energy regions in some transform domain.

Existing methods that conform to this viewpoint include

(block-)thresholding methods [1], [2], “synchrosqueezing” [3]

and “reassignment” [4], [5] methods, or methods based on

ridges [6], [7]). A recently proposed complementary viewpoint

is to identify regions in some transform domain where the

signal deviates from what we expect to find for white noise.

More specifically, Flandrin proposed to identify a signal based

on the distribution of the zeros of the short-time Fourier

transform (STFT) [8]. For pure noise these zeros (as well

as the distribution of local maxima) have a very regular

distribution which is broken in the presence of a signal [9],

[10].

This observation suggests that the important signal com-

ponents can be found by identifying in the spectrogram the

area of statistical deviation from the pattern expected from

noise. In [11], this idea has been statistically formalized by

noting that the spectrogram (for a Gaussian window) of white

noise is a Gaussian entire function. For these random functions

well-known statistics are available [12] that enable a statistical

analysis.
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We propose a scheme similar to Flandrin’s, but based on a

continuous wavelet transform (WT) [13, Ch. 2] with analyzing

wavelets of the form

ĝα(ξ) :=

{
ξ

α−1

2 e−ξ, ξ ≥ 0,

0, ξ < 0,
(1)

with α > 1. The starting point of our analysis is the

observation that these windows lead to WTs that map into

a space of analytic functions in the upper half-plane [14].

As a consequence, we identify the point process arising from

the zeros of the scalograms of white noise with the zero set

of a so-called hyperbolic Gaussian analytic function (GAF).

As in the STFT case, these GAFs have a well-understood

distribution of zeros and we use this information to propose an

adequate filtering procedure. More specifically, the zeros have

a regular distribution with respect to the hyperbolic metric.

We thus use a hyperbolic Delaunay triangulation of the set

of zeros and proceed as in [8]: we test for a deviation on the

distribution expected from white noise, by selecting significant

triangles, in our case, hyperbolic triangles with unexpectedly

large hyperbolic perimeter.

II. ANALYTICITY INDUCING WAVELET TRANSFORM

Let g ∈ L2(R) such that its Fourier transform ĝ vanishes

almost everywhere on R
−. The continuous WT of a function

(or signal) s ∈ L2(R) with respect to the mother wavelet

g ∈ L2(R) is defined as

Wgs(x, y) = 〈s,TxDyg〉 =
1√
y

∫

R

s(t)g

(
t− x

y

)
dt, (2)

for all x ∈ R, y ∈ R
+. Here, Tx and Dy denote the translation

and dilation operators, respectively, given by (Txs)(t) = s(t−
x), and (Dys)(t) = y−1/2s(t/y) for all t ∈ R.

We are interested in mother wavelets g such that the image

of any function is (up to scaling) an analytic function in the

complex variable x+ iy. The class of all g satisfying this an-

alyticity inducing property was recently characterized in [15]

and consists essentially of the Cauchy wavelets specified by

(1). More specifically, the function x+ iy 7→ y−
α

2 Wgαs(x, y)
is analytic for α > 1 and s ∈ L2(R). Moreover, the operator

s 7→ y−
α

2 Wgαs(x, y) is up to a constant an isometry from

L2(R) to the space A2
α := {f ∈ L2(Π+, yα−2dxdy) :

f is analytic}, where Π+ denotes the upper complex halfplane

[14]. The spaces A2
α are known as weighted Bergman spaces

on the upper halfplane and are Hilbert spaces of analytic

functions.



III. WAVELET TRANSFORM OF WHITE NOISE

In order to analyze the properties of the WT of white

noise, we first introduce a rigorous definition of white noise.

Specifically, we adopt a Gaussian Hilbert space approach [16].

Let (Ω,F ,P) be a probability space. Heuristically, one thinks

of white noise on R as a linear combination N =
∑

∞

n=0
anen

where an are independent standard (real or complex) Gaus-

sians and {en : n ≥ 0} is an orthonormal basis of L2(R).
Unfortunately, this sum does not converge in L2(R), with

probability 1. However, for any s ∈ L2(R), the sum

N (s) :=

∞∑

n=0

an〈en, s〉

converges in L2(Ω,F ,P) to a complex Gaussian variable

with mean zero and variance ‖s‖2. A precise definition of

white noise is then as the collection of random variables

G := {N (s) : s ∈ L2(R)}. The space G is a Gaussian Hilbert

space, that is, a Hilbert space consisting of Gaussian random

variables. Its inner product is induced by ‖N (s)‖2G := ‖s‖2.

We will call the white noise real or complex depending

on whether the variables an are real or complex standard

Gaussians. The definition is independent of the choice of

orthonormal basis.

We can now extend the WT with respect to the windows

gα to (real or complex) white noise by

Wgα(N )(z) = N (TxDygα) =

∞∑

n=0

anWgαen(z), (3)

where z = x+ iy. By the isometry property of the WT, there

exists a constant cα > 0 such that {bn : n ≥ 0}, with bn :=
cαy

−
α

2 Wgα(en), is an orthonormal basis of A2
α. The series in

(3) can thus be rewritten as

Wgα(N )(z) =
y

α

2

cα

∞∑

n=0

anbn(z) =
y

α

2

cα
fα(z), (4)

where fα :=
∑

∞

n=0
anbn is a so-called hyperbolic Gaussian

analytic function (GAF) [17] on A2
α. Although the GAF fα

does not take values in A2
α, the defining series converges

almost surely and locally uniformly to an analytic function

[17]. We are interested in the distribution of zeros of the WT

of white noise. By (4), we obtain that the set of zeros of

Wgα(N ), where N is complex white noise, has the same

distribution as those of fα, the hyperbolic GAF associated

with the Bergman space A2
α. This observation has recently

been made simultaneously in [18] and with a slightly different

definition of white noise in [19].

The zero set of GAFs is a well-studied point process. We can

think of a point process as a random integer-valued measure,

by setting a Dirac mass at each zero. This point process is

simple [17, Lem. 2.4.1], which means that singletons have at

most measure 1. The first intensity function of the zero set of

fα is the function ρ satisfying

E#{w ∈ U : fα(w) = 0} =

∫

U

ρ(z)dz,

for every measurable subset U ⊆ Π+. The first intensity of

the zero set of GAFs exists and can be computed from the

Edelman-Kostlan formula [17], [20], [21] as

ρ(z) =
1

4πy2
. (5)

This means that the zeros are distributed according to a

multiple of the hyperbolic area density on the upper half-

plane. Besides this rough description, the zeros of GAFs are

known to be quite rigid: the events where the concentration

of the zeros deviates significantly from what is prescribed

by the first intensity are very unlikely (see, e.g., the large

deviations estimates by Sodin [20] and Offord [22]). Moreover,

the interaction between zeros depends only on their hyperbolic

distance. Thus, we expect that the hyperbolic distance is the

correct metric to assess how far zeros are away from each

other in our setting. This insight is the starting point for our

filtering approach based on hyperbolic triangulation.

IV. FILTERING WITH HYPERBOLIC TRIANGULATIONS

Motivated by an idea of Flandrin [8], we expect that the

distribution of zeros in the scalogram can be used to identify

important signal components. More specifically, due to the

interaction between zeros for the WT of white noise, there

is a quite rigid distribution of these zeros in parts that are

dominated by noise and a signal might interfere with this

distribution and enable us to identify signal parts.

To identify the zero set, we use that the wavelet transformed

signal is analytic and, thus, local minima of the modulus must

be zeros. In the discrete scalogram, we declare a point a zero if

it is smaller than its 4 neighbors. Experimentally, the number

of zeros found by this procedure fits well the expected number

of zeros prescribed by the one-point intensity function (5).

Similar to the method proposed in [8], we consider a

triangulation of the zero set. However, as the interaction

between zeros is not governed by Euclidean distance but by

hyperbolic distance, we consider a hyperbolic triangulation

of the zero set. To this end, we use the fact that the edges

constructed by a Euclidean triangulation are a superset of

the edges of the hyperbolic triangulation [23]. We can even

find the triangles that belong to the Euclidean but not to the

hyperbolic triangulation by calculating the circumcircle related

to each triangle. Only if such a circle is contained in the upper

halfplane, the associated triangle is also part of the hyperbolic

triangulation [23].

The hyperbolic distance between the points (x1, y1) and

(x2, y2) is given by

dh
(( x1

y1

)
,
( x2

y2

))
= 2 sinh−1

(∥∥( x1

y1

)
−
( x2

y2

)∥∥
2
√
y1y2

)
.

The shortest connection between two points is along a

geodesic, which are in this setting halfcircles centered on

the x-axis or vertical lines x = const. In particular, a hy-

perbolic triangulation is best illustrated using these geodesics

to connect the points. An illustration is given in Fig. 1.

Following the reasoning in [8], we expect that for pure noise
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Fig. 1. Euclidean (blue) and hyperbolic (red) triangulation of the same point
pattern. Note that not all triangles in the Euclidean triangulation do also belong
to the hyperbolic triangulation.

the triangles in a hyperbolic Delaunay triangulation will all

have approximately the same hyperbolic perimeter. If the

perimeter differs significantly from the one observed for noise,

we consider the area of the hyperbolic triangle to be part of the

signal. Unfortunately, deriving a closed form expression of the

expected hyperbolic perimeter ph is beyond the scope of this

work, but based on a large number of simulations, we observed

that ph ≈ 12.1/
√
α for a pure noise signal and a wide range

of α (50 to 10 000). The choice of a threshold τ above which a

triangle is considered to contain signal components is of course

a tradeoff between interpreting noise as signal and missing

signal components. We take a very strict choice of τ = 17/
√
α

which a pure noise triangle exceeds experimentally only with

probability 6 · 10−4. Because signal components usually span

more than a single triangle, we disregard triangles that do

not share at least one corner with another triangle above the

threshold. This reduces the observed probability that a noise

triangle is wrongly considered a signal component to below

10−4. Finally, to avoid the most significant boundary effects,

we also exclude all triangles that have a corner point on the

boundary of the considered region.

V. EXPERIMENTS

We performed some preliminary experiments of the pro-

posed method to illustrate the strength and weaknesses.

The signals we consider are taken from the EBU SQAM

database [24] and white noise with the same average power as

the signal is added. We use the WT with mother wavelet gα
and interpret the unique peak of gα in the frequency domain as

the frequency associated with a given scale (cf. [15, Sec. IV]).

The first example is the violin signal 8 in [24] from 0.4s

to 2.4s. Fig. 2 shows the scalogram and masked scalogram

for α and illustrates that not all the high energy components

are found by the proposed method. In particular, well resolved

components can by chance have exactly the width that results

in triangles that have the same perimeter as pure noise tri-

angles. Even reducing the threshold τ did not recover more
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Fig. 2. Scalogram of a two second violin signal in white noise (top) and
masked scalogram based on hyperbolic triangulation (bottom).

signal components but mainly increased noise. This is to be

expected as the theory only provides understanding of what

properties we expect from pure noise components but does not

exclude the possibility that also specific signal parts may share

these properties. Due to this problem it is reasonable to set the

threshold high as in this case the identified components are

with high probability signal components. We also considered

other values of α and observed that higher values more easily

detect higher frequency components whereas boundary effects

are more pronounced and low frequency components are not

as well identified.

The second example we considered is the male English

voice signal 50 in [24] from 0.4s to 2.4s. In Fig. 3, we

show the scalogram and masked scalogram for the setting

α = 300 and observe that the mask is quite patchy. In the lower

frequency components the mask follows the signal components

reasonably well although some smaller triangles are missed.

Again, we observed for higher α a better identification of

higher frequency components and vice versa. In particular,

more triangles are missed for greater α and it is difficult to

see the structure of the signal in the masked scalogram.
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Fig. 3. Scalogram of a two second male voice signal in white noise (top)
and masked scalogram based on hyperbolic triangulation (bottom).

VI. CONCLUSION

We presented an approach to generalize a method proposed

in [8] to WTs. Using analyticity inducing wavelets, we used

the relation to GAFs to obtain a basic understanding of the dis-

tribution of the zero pattern of the wavelet transformed signal.

This relation allowed us to identify the hyperbolic metric as the

natural distance between zeros. Translating the triangulation

idea to this setting, we analyzed some preliminary signals and

found that we can identify some but not all signal components.

Many questions regarding optimal choices of parameters

and thresholds can be considered in future work. For example,

the exact role of the parameter α is largely unknown and so far

we only observed in limited experiments that high-frequency

components are better identified by larger α. Furthermore, the

threshold chosen for the detection of signal components is at

the moment only based on experimental results for pure noise

signals. A more detailed analysis of the expected hyperbolic

distance between points and its variance for the hyperbolic

GAF would allow for a better founded choice. Finally, the

method does not by itself allow for a reliable denoising or

identification of signals. Since the method primarily finds

larger signal regions but does not at all rely on the magnitude

of signal components, a combination with established thresh-

olding techniques seems promising.
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