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Abstract—This paper presents an analysis of Cramer-Rao
lower bounds (CRLB) in the phase retrieval problem. Previous
papers derived Fisher Information Matrices for the phaseless
reconstruction setup. Two estimation setups are presented. In the
first setup the global phase of the unknown signal is determined
by a correlation condition with a fixed reference signal. In the
second setup an oracle provides the optimal global phase. The
CRLB is derived for each of the two approaches. Surprisingly
(or maybe not) they are different.

I. INTRODUCTION

The phase retrieval problem (also known as the phaseless
reconstruction problem) can simply be stated as the recon-
struction of a signal from the magnitudes of a redundant rep-
resentation (see [4]). Recently, there has been progress made
on three problems: injectivity conditions, stability bounds,
and reconstruction algorithms. In the next section we review
existing results on the second problem, stability bounds, which
is the focus of this paper. Recent papers computed the Fisher
Information Matrix (FIM) for two noisy mixing models: the
additive white Gaussian noise model (AWGN), and a non-
additive white Gaussian noise model (non-AWGN). This paper
derives Cramer-Rao Lower Bounds (CRLB) for more general
setups. As will become clear later, the CRLB is not just
simply the inverse of FIM as is the case in the standard
estimation theory ([10]) nor, in general, the pseudoinverse
of FIM (as suggested by [11]). The difficulty comes from
the non-identifiability of the general problem. To address the
identifiability issue two estimation setups are proposed below.
Associated to each of the two setups a CRLB is derived in
section III.

Consider the case of the n-dimensional Hilbert space H =
Cn as the signal space. Fix a frame (i.e. a spanning set in
this finite dimensional case - see [9] for more information on
frames) F = {f1, . . . , fm} in H . For an unknown signal x ∈
Cn consider a measurement process y = (yk)1≤k≤m where
the distribution of y depends on the magnitudes of 〈x, fk〉:

p(y;x) = F (s1, . . . , sm, y) , sk = |〈x, fk〉|, 1 ≤ k ≤ m.
(1.1)

as is the case for the measurements

yk = |〈x, fk〉+ µk|a + νk , 1 ≤ k ≤ m, (1.2)

where a > 0 is a fixed exponent (typically 1 or 2) and
(µk)1≤k≤m, (νk)1≤k≤m are realizations of independent noise
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Fig. 1. Measurement process

processes with µk circular (i.e. pµk(z) = p̃k(|z|) for some
density function p̃k). In the absence of noise it is obvious that
the signal x cannot be recovered from the set of parameters
(sk = |〈x, fk〉|)1≤k≤m since eiϕx will produce the same set
of intermediary variables (s1, . . . , sm). The phase retrieval
problem refers to estimating the original signal x up to a global
phase factor. In order to formalize this concept, consider the
equivalence relation between two vectors x, y ∈ Cn: x ∼ y if
there is a real t so that x = eity. Let Ĉn = Cn/ ∼ denote
the set of equivalence classes. A frame F is called phase
retrievable if the nonlinear map

α : Ĉn → Rm , α(x) = (|〈x, fk〉|)1≤k≤m (1.3)

is injective. Throughout this paper we assume the frame
F is phase retrievable, unless stated otherwise. We assume
additionally:

1) The parameters (s1, . . . , sm) are identifiable on (0,∞)m

from the measurement y, meaning that if s[1], s[2] ∈
(0,∞)m and we have ∀y ∈ Rm, F (s[1], y) = F (s[2], y)
then s[1] = s[2].

2) The likelihood function F (s1, ..., sm, y) satisfies the
regularity conditions in [12].

The quotient space Ĉn = Cn/ ∼ can be thought of as the
quotient Cn/T 1. As described in [6], [7] the quotient space
admits two metric space structures which are topologically
equivalent (generate the same open stes), but are not Lipschitz
equivalent. In [2] we related the lower Lipschitz constant of
the map α to the FIM of a non-AWGN, whereas in [6] we
related the lower Lipschitz constant of the nonlinear map

β : Ĉn → Rm , β(x) = (|〈x, fk〉|2)1≤k≤m

to the FIM of the AWGN model. We review these results in
the next section. Now we present the two estimation setups
considered in this paper.



A. Setup I: The Reference Signal Based Estimation

The first setup uses a reference signal to fix the global phase:
Fix z0 ∈ Cn a unit-norm vector, ‖z0‖ = 1, and define the
following set

Vz0 = {x ∈ Cn : imag(〈x, z0〉) = 0 , real(〈x, z0〉) > 0 }.
(1.4)

For this setup we assume the unknown and to-be-estimated
signal x is not orthogonal to z0. In this case, from its
equivalence class x̂ we pick the representative that lies in Vz0 .
Specifically we assume from the outset that the signal to-be-
estimated x correlates positively with z0. Note that this is a
mild requirement since we can never find the global phase of
the true signal x just from magnitude measurements α(x). The
only loss of generality is due to the non-orthogonality assump-
tion: 〈x, z0〉 6= 0. In effect we exclude a linear subspace of Cn
of complex dimension n− 1. Under the assumption x ∈ Vz0 ,
when the frame is phase retrievable, the measurements (1.2)
define an identifiable process. In this case an estimator is given
by a map o : Rr → Ez0 where

Ez0 = {x ∈ Cn : imag(〈x, z0〉) = 0} = spanR(Vz0).

Note Ez0 is a real linear space of real dimension 2n − 1.
The estimator o is said unbiased with respect to the first setup
if E[o(y);x] = x , ∀x ∈ Vz0 . Theorem 3.2 in section III
presents the Cramer-Rao Lower bound associated to this setup.

B. Setup II: The Oracle-Based Signal Estimation

The second setup uses an oracle to provide the global
phase. Specifically, the estimation procedure is performed in
two steps: first a nonlinear function o : Rm → Cn that
estimates the equivalence class of the unknown signal x.
Technically o : Rm → Ĉn but then for each y ∈ Rm
choose any representative in the class o(y). We overload the
notation and use the same letter o for this latter differentiable
estimator. Then an oracle computes the phase that minimizes
the approximation error mint ‖x− eito(y)‖. We choose the
Euclidean norm in which case the optimal phase is given by
〈x, o(y)〉/|〈x, o(y)〉| (our scalar product is linear in the first
term and anti-linear in the second term). Thus, the overall
estimator has the form

õ : Rm → Cn , õ(y;x) =
〈x, o(y)〉
|〈x, o(y)〉|

o(y). (1.5)

The estimator õ is said unbiased with respect to the second
setup (or simply, unbiased) if

E
[
〈x, o(y)〉
|〈x, o(y)〉|

o(y)

]
= x , ∀x ∈ Cn. (1.6)

Notice the unbiasedness condition is slightly stronger than
in Setup I because it applies to all vectors x ∈ Cn without
restriction. On the other hand it requires access to the unknown
signal x in order to correct for the unknown global phase
factor. Theorem 3.3 in section III presents the CRLB for this
setup.

II. EXISTING RESULTS

A. Notations

First we present the “realification” procedure as introduced
in [1]. Our complex scalar product is given by 〈a, b〉 =
a1b1 + · · ·+anbn, where a, b ∈ Cn. Throughout the paper the
letter I denotes the identity matrix of appropriate size, whereas
I denotes the Fisher Information Matrix. Consider the R-linear
map  : Cn → R2n, (x) =

[
real(x)T imag(x)T

]T
. We

use Latin letters to denote Cn-vectors, and Greek letters to
denote their R2n correspondents. One exception: y ∈ Rm
will always denote the real vector of m measurements. Let
J denote the 2n × 2n matrix J = [0 − I; I 0], where I
denotes the n × n identity matrix. Note (ix) = J (x) for
every x ∈ Cn. Let ξ = (x), ζ0 = (z0), and ϕk = (fk) for
1 ≤ k ≤ m. For the reference signal z0 we introduced sets
Vz0 and Ez0 . Their counterparts in R2n are denoted by Vζ0
and Eζ0 :

Vζ0 = {η ∈ R2n : 〈η, Jζ0〉 = 0 , 〈η, ζ0〉 > 0}
Eζ0 = {η ∈ R2n : 〈η, Jζ0〉 = 0} = {Jζ0}⊥. (2.1)

Let Π⊥Jξ and Π⊥Jζ0 denote the orthogonal projections onto the
orthogonal complements of Jξ, and Jζ0, respectively:

Π⊥Jξ = I − 1

‖ξ‖2
JξξTJT , Π⊥Jζ0 = I − Jζ0ζT0 JT ,

where I denotes the 2n × 2n identity matrix. To each frame
vector fk we associate the rank-2 matrix Φk = ϕkϕ

T
k +

Jϕkϕ
T
k J

T . A direct computation shows that |〈x, fk〉| =√
〈Φkξ, ξ〉. Let R(ξ) denote the following matrix R(ξ) =∑m
k=1 Φkξξ

TΦk. For a square matrix M , we let M† denote
the Moore-Penrose pseudoinverse of M . For the estimator
o : Rm → Ez0 we let ω denote its realification, ω : Rm → Eζ0 ,
ω(y) = (o(y)).

As shown in Theorem 3.2 below, the estimator ω is unbiased
with respect to the first setup iff E[ω(y); ξ] = ξ, ∀ξ ∈ Vζ0 .
For the second setup, let o : Rm → Cn be the signal class
estimator, and let ω = (o) denote its realification. Note that
(eito(y)) = cos(t)ω(y) + sin(t)Jω(y) =: U(t)ω(y), where
{U(t) := cos(t)I + sin(t)J ; 0 ≤ t < 2π} is a 1-dimensional
group of orthogonal matrices. As we show in Theorem 3.3
below, the unbiasedness condition of Setup II turns into:

E

[
〈ξ, ω(y)〉√

(〈ξ, ω(y)〉)2 + (〈Jξ, ω(y)〉)2
ω(y)+

〈ξ, Jω(y)〉√
(〈ξ, ω(y)〉)2 + (〈Jξ, ω(y)〉)2

Jω(y)

]
= ξ (2.2)

for every ξ ∈ R2n.

B. Existing FIM and CRLB Results

In this subsection we review existing expressions for the
Fisher Information Matrix for two stochastic models and an
existing Cramer-Rao Lower Bound.

The first model is the Additive White Gaussian Noise
(AWGN) model yk = |〈x, fk〉|2 + νk, 1 ≤ k ≤ m, where



(νk)1≤k≤m are independent and identically distributed (i.i.d.)
realizations of a normal random variable of zero mean and
variance σ2. The second process is a non-Additive White
Gaussian Noise (nonAWGN) model where the noise is added
prior to taking the absolute value yk = |〈x, fk〉 + µk|2,
1 ≤ k ≤ m, where (µk)1≤k≤m are i.i.d. realizations of a
Gaussian complex process with zero mean and variance ρ2.
For either stochastic model we present the Fisher Information
Matrix (FIM). The FIM is expressed in terms of the real
vector ξ = (x). Once the likelihood function P (y; ξ) has
been established, the FIM is computed by the following (see
[10]).

I(ξ) = E
[
(∇ξ log P (y; ξ))(∇ξ log P (y; ξ))T

]
. (2.3)

Following [8] and [1] for the AWGN model we obtain:

IAWGN(ξ) =
4

σ2
R(ξ) =

4

σ2

m∑
k=1

Φkξξ
TΦk. (2.4)

In [2] the Fisher information matrix for the nonAWGN
model is shown to have the following form:

InonAWGN(ξ) =
4

ρ4

m∑
k=1

(
G1

(
〈Φkξ, ξ〉
ρ2

)
− 1

)
Φkξξ

∗Φk

=
4

ρ2

m∑
k=1

G2

(
〈Φkξ, ξ〉
ρ2

)
1

〈Φkξ, ξ〉
Φkξξ

∗Φk, (2.5)

where the two universal scalar functions G1, G2 : R+ → R+

are given by

G1(a) =
e−a

a

∫ ∞
0

I2
1 (2
√
at)

I0(2
√
at)

te−tdt =
e−a

8a3

∫ ∞
0

I2
1 (t)

I0(t)
t3e−

t2

4a dt

G2(a) = a(G1(a)− 1),

where I0 and I1 are the modifed Bessel functions of the first
kind and order 0 and 1, respectively. Both Fisher information
matrices have the same null space spanned by Jξ.

For the first estimation setup based on a reference signal
z0, the paper [1] showed that the Cramer-Rao Lower Bound
of an unbiased estimator ω : Rm → Eζ0 for the AWGN

model is given by: Cov[ω] �
(

Π⊥Jζ0I
AWGN(ξ)Π⊥Jζ0

)†
(where

� denotes the Loewner ordering, i.e. for A and B hermitian
matrices, we say A � B if A − B is positive semi-definite).
The same result was extended to the non-AWGN model in
[2]: Cov[ω] �

(
Π⊥Jζ0I

nonAWGN(ξ)Π⊥Jζ0

)†
, where again ω is an

unbiased estimator for the reference signal based estimation
setup.

III. MAIN RESULTS

In this section we present the new results of this paper. First
we prove an analytic property of Fisher Information Matrix
when the likelihood function satisfies the conditions of this
paper.

Proposition 3.1: Assume the likelihood function P (y; ξ) =
p(y;x) of a measurement process y is a function of (sk =
|〈x, fk〉| =

√
〈Φkξ, ξ〉)1≤k≤m only, as in equation (1.1),

where F = {fk; 1 ≤ k ≤ m} is a frame, and the parame-
ters (s1, . . . , sm) are identifiable. Assume also the likelihood
satisfies the regularity conditions:

1) E[∇ξ log P (y; ξ)] = 0 for all ξ ∈ R2n.
2) rank(E[∂log(F )

∂sk

∂log(F )
∂sj

])1≤k,j≤m is constant on
(0,∞)m

Let I(ξ) denote the Fisher Information Matrix defined by (2.3).
If F if phase retrievable, then ker I(ξ) = spanR(Jξ) and
thus rank(I(ξ)) = 2n − 1 for every ξ 6= 0. Conversely if
(s1, . . . , sm) are identifiable from y and rank(I(ξ)) = 2n− 1
for every ξ 6= 0 then the frame is phase retrievable.

Next we extend the CRLB bounds described before to
any stochastic model where the likelihood depends on the
magnitudes of frame coefficients. For this extension we use
a different approach than the one used in [1]. Along the way
we obtain a formally different expression that turns out to be
a different factorization of the lower bound.

Theorem 3.2: Consider the reference signal based estimation
setup. Let z0 ∈ Cn and ζ0 = (z0) be the unit-norm
reference signal and Vζ0 and Eζ0 as in (2.1). Assume the
likelihood function P (y; ξ) = p(y;x) satisifes the assumptions
of Proposition 3.1. Let I(ξ) denote the Fisher Information
Matrix (2.3). Let ω : Rr → Eζ0 be an unbiased estimator.
Then for any ξ ∈ Vζ0 the covariance matrix is bounded below
by:

Cov[ω(y); ξ] �
(
Π⊥Jζ0I(ξ)Π

⊥
Jζ0

)†
= LT (I(ξ))†L (3.1)

where L = I − 1
〈ξ,ζ0〉Jζ0ξ

TJT .
The third result refers to the oracle-based estimation. We

derive a Cramer-Rao type bound for this case. Unfortunately
the lower bound turns out to be dependent on the actual esti-
mator (as it happens in the general case of biased estimators).

Theorem 3.3: Consider the oracle-based estimation setup.
Assume the likelihood function P (y; ξ) = p(y;x) satisfies the
assumptions of Proposition 3.1. Let I(ξ) denote the Fisher
Information Matrix (2.3). Let o : Rm → Cn be an estimator
of the equivalence class, and let õ : Rm → Cn be given by
(1.5). Assume õ is an unbiased estimator for x and denote
ω = (o) and ω̃ = (õ). Then for any ξ 6= 0 the covariance
matrix is bounded below by:

Cov[ω̃(y); ξ] � (I −∆)(I(ξ))†(I −∆) (3.2)

where
∆ = E

[
(〈ω, Jξ〉)2

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2
ωω

T
+

〈ω, ξ〉〈ω, Jξ〉
((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2

(Jωω
T

+ωω
T
J
T

) +
(〈ω, ξ〉)2

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2
Jωω

T
J
T

]
. (3.3)

The matrix ∆ satisfies ∆ = ∆T � I −Π⊥Jξ � 0, ∆Jξ = Jξ
and ∆ξ = 0.

IV. PROOFS OF THE MAIN RESULTS

A. Proof of Proposition 3.1

We denote by p(y;x) the likelihood function parametrized
by the unknown complex n-vector x, and we let P (y; ξ)
denote the same likelihood where |〈x, fk〉| is replaced by



E[(ω(y)− U(tξ)ξ)(∇ξ log P (y; ξ))T ] =
(〈ξ, Jζ0〉)2

((〈ξ, ζ0〉)2 + (〈ξ, Jζ0〉)2)3/2
ξζT0 −

〈ξ, ζ0〉〈ξ, Jζ0〉
((〈ξ, ζ0〉)2 + (〈ξ, Jζ0〉)2)3/2

(ξζT0 J
T − JξζT0 )

− (〈ξ, ζ0〉)2

((〈ξ, ζ0〉)2 + (〈ξ, Jζ0〉)2)3/2
JξζT0 J

T +
〈ξ, ζ0〉√

(〈ξ, ζ0〉)2 + (〈ξ, Jζ0〉)2
I − 〈ξ, Jζ0〉√

(〈ξ, ζ0〉)2 + (〈ξ, Jζ0〉)2
J (4.2)

√
〈Φkξ, ξ〉. A direct computation shows the commutation rela-

tion U(t)Φk = ΦkU(t) for every t ∈ R and 1 ≤ k ≤ m. Thus
〈ΦkU(t)ξ, U(t)ξ〉 = 〈Φkξ, ξ〉 which implies P (y;U(t)ξ) =
P (y; ξ) for all t. This invariance relation lifts to the Fisher
Information Matrix (2.3), I(U(t)ξ) = U(t)I(ξ)U(t)T . On the
other hand let q(t1, . . . , tm, y) = logF (

√
t1, . . . ,

√
tm, y) so

that ∇ξ log P (y; ξ) = 2
∑m
k=1

∂q
∂tk

Φkξ. Then

I(ξ) = 4

m∑
k,j=1

E[
∂q

∂tk

∂q

∂tj
]Φkξξ

TΦj

According to Theorem 1 in [12], the identifiability condition
implies the matrix Ĩ(s) = (E[ ∂q∂tk

∂q
∂tj

])1≤k,j≤m is strictly
positive (hence invertible). Thus

〈I(ξ)v, v〉 = 4

m∑
k,j=1

Ĩ(s)k,j〈Φkξ, v〉〈Φjξ, v〉

This show that v ∈ ker I(ξ) if and only if 〈Φkξ, v〉 = 0
for all k. Thus ker(I(ξ)) = ker(R(ξ)). But Theorem 4 in [8],
or Theorem 3.1 in [1] implies that F is a phase retrievable
frame if and only if ker(R(ξ)) = spanR(Jξ), for ξ 6= 0,
which means rank(I(ξ)) = rank(R(ξ)) = 2n−1, for ξ 6= 0.

B. Proof of Theorem 3.2

The approach used to prove Theorem 4.3 in [1] can be
used here to show that (Π⊥Jζ0I(ξ)Π

⊥
Jζ0

)† is a lower bound of
the covariance matrix. However we prefer to use a different
approach and obtain the entire (3.1).

As is customary in the standard CRLB derivation (see [10])
we start from the unbiasedness equation. However we first
extend this equation from Vζ0 to the open set Ωζ0 = R2n \
{ξ ∈ R2n : 〈ξ, ζ0〉 = 〈ξ, Jζ0〉 = 0}. This is accomplished as
follows. Let ξ ∈ Ωζ0 . Then there is a unique t = tξ ∈ [0, 2π)
so that U(t)ξ ∈ Vζ0 . A direct computation shows:

U(tξ)ξ =
〈ξ, ζ0〉√

(〈ξ, ζ0〉)2 + (〈Jξ, ζ0〉)2
ξ +

〈Jξ, ζ0〉√
(〈ξ, ζ0〉)2 + (〈Jξ, ζ0〉)2

Jξ. (4.1)

On the other hand P (y;U(tξ)ξ) = P (y; ξ) due to invariance
to a global phase factor. Hence unbiasedness is equivalent to
E[ω(y); ξ] = U(tξ)ξ, ∀ξ ∈ Ωζ0 . Next we take the gradient
with respect to ξ on both sides and use the regularity condition
to obtain (4.2).

Next we specialize (4.2) to the case ξ ∈ Vζ0 , thus 〈ξ, Jζ0〉 =
0 and 〈ξ, ζ0〉 > 0. This simplifies (4.2) to:

E[(ω(y)− U(tξ)ξ)(∇ξ log P (y; ξ))
T

] = I −
1

〈ξ, ζ0〉
Jξζ

T
0 J

T
= L

T
.

Next take η, µ ∈ R2n and use the Cauchy-Schwartz inequality
to obtain:

〈Cov(ω)η, η〉〈I(ξ)µ, µ〉 ≥ (〈LTµ, η〉)2.

Note next that LTJξ = Jξ − Jξ = 0. Hence ker(I(ξ)) ⊂
ker(LT ). Thus we get:

〈Cov(ω)η, η〉 ≥ max
µ∈(ker(I(ξ)))⊥

(〈LTµ, η〉)2

〈I(ξ)µ, µ〉
.

Then using standard properties of the pseudoinverse we obtain:

Cov(ω) � LT (I(ξ))†L
which is part of equation (3.1). The proof ends once we
establish the equality LT (I(ξ))†L = (Π⊥Jζ0I(ξ)Π

⊥
Jζ0

)†. This
last equality is obtained once we noticed that LT η is the
oblique projection of the vector η onto Eζ0 along the subspace
ker(I(ξ)) = spanR(Jξ). Thus any µ ∈ R2n can be written
uniquely as µ = aJξ + LTµ with a = 〈µ,Jζ0〉

〈ξ,ζ0〉 . Thus

〈LT (I(ξ))†Lη, η〉 = max
µ

(〈LTµ, η〉)2

〈I(ξ)µ, µ〉
= max
ε∈Eζ0

(〈ε, η〉)2

〈I(ξ)ε, ε〉
=

= max
ε

(〈Π⊥
Jζ0

ε, η〉)2

〈Π⊥
Jζ0

I(ξ)Π⊥
Jζ0

ε, ε〉
= 〈(Π⊥

Jζ0
I(ξ)Π⊥

Jζ0
)
†
η, η〉

which ends the proof.

C. Proof of Theorem 3.3

First we note that similar to equation (4.1), the argument
of the expectation in (2.2) is exactly (ω̃(y)). This proves the
first claim, namely that equation (2.2) is the realification of
(1.6).

Take the gradient of the unbiasedness condition with respect
to ξ and use the regularity condition of Proposition 3.1 to get:

I = ∆ + E[(ω̃(y)− ξ)(∇ξ log P (y; ξ))T ]

with ∆ given by (3.3). Then use unbiasedness again to obtain
∆Jξ = Jξ. Therefore ker I(ξ) = spanR(Jξ) ⊂ ker(I − ∆)
and by arguments similar to ones used in Theorem 3.2 we
conclude that Cov(ω̃) � (I −∆)(I(ξ))†(I −∆). It is obvious
that ∆T = ∆. The only remaining claims that need to be
proved are ∆ξ = 0 and ∆ � I−Π⊥Jξ. To show these, observe

〈∆η, η〉 = E
[

(〈ω, Jξ〉〈ω, η〉+ 〈ω, ξ〉〈Jω, η〉)2

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2

]
≥ 0.

Thus 〈∆ξ, ξ〉 = 0 and since ∆ � 0 it follows ∆ξ = 0. Take
now η ∈ R2n and use ∆Jξ = Jξ to compute:

(〈Jξ, η〉)2 =

(
E
[
〈ω, Jξ〉〈ω, η〉+ 〈ω, ξ〉〈Jω, η〉√

(〈ξ, ω〉)2 + (〈Jξ, ω〉)2

])2

.

Use (E[XY ])2 ≤ E[X2]E[Y 2] to obtain

(〈Jξ, η〉)2 ≤ E
[

(〈ω, Jξ〉〈ω, η〉+ 〈ω, ξ〉〈Jω, η〉)2

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2

]

×E
[√

(〈ξ, ω〉)2 + (〈Jξ, ω〉)2
]
.



Using again unbiasedness we obtain ‖ξ‖2 =

E
[√

(〈ξ, ω〉)2 + (〈Jξ, ω〉)2
]

(by taking the inner product
with ξ) and therefore

∆ � 1

‖ξ‖2
JξξTJT = I −Π⊥Jξ.

This concludes the proof of Theorem 3.3.

V. CONCLUSION

In this paper we presented two Cramer-Rao Lower Bounds
each corresponding to a specific estimation setup in the
phase retrieval problem. The first setup assumes a unit-norm
reference signal used to select the global phase factor of the
unknown signal. The second setup uses an oracle that returns
the phase factor that selects the unique representative in the
estimated class that is closest to the unknown signal with
respect to the Euclidean norm. For the first setup we derived
two equal expressions of the lower bound that are independent
of the unbiased estimator. For the second setup our lower
bound depends on the unbiased estimator.
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