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Abstract—Phase retrieval deals with the estimation of complex-
valued signals solely from the magnitudes of linear measurements.
While there has been a recent explosion in the development of
phase retrieval algorithms, the lack of a common interface has
made it difficult to compare new methods against the state-of-the-
art. The purpose of PhasePack is to create a common software
interface for a wide range of phase retrieval algorithms and to
provide a common testbed using both synthetic data and empir-
ical imaging datasets. PhasePack is able to benchmark a large
number of recent phase retrieval methods against one another
to generate comparisons using a range of different performance
metrics. The software package handles single method testing as
well as multiple method comparisons.

The algorithm implementations in PhasePack differ slightly
from their original descriptions in the literature in order to
achieve faster speed and improved robustness. In particular,
PhasePack uses adaptive stepsizes, line-search methods, and fast
eigensolvers to speed up and automate convergence.

I. INTRODUCTION

Classical linear inverse problems recover an unknown signal
x ∈ Rn from m linear measurements of the form Ax = b,
where A ∈ Cm×n is a (known) linear measurement operator
and b ∈ Cm is a (possibly noisy) vector of measurements.
In contrast, phase retrieval [12], [20], [30] is the recovery
of signals from the magnitudes of linear measurements |Ax|,
where | · | denotes the entry-wise absolute value of the (possibly
complex-valued) measurements. Phase retrieval is prevalent in
the physical sciences where detectors can measure only the
magnitude (brightness or intensity) of an electromagnetic wave,
but not its phase. Such modalities include optical imaging [4],
[25], quantum state tomography, electron microscropy [26],
crystallography, astronomy [12], and diffraction imaging [30].

Phase Retrieval is an example of a non-convex quadratic
program with quadratic constraints. In the real-valued case,
it is a combinatorial problem of determining the missing
signs of Ax, which is known to be NP-hard [29]. Despite
this observation, recent years have seen the development of
new algorithms that solve phase retrieval problems effectively.
Unfortunately, because of the lack of publicly available real-
world data, the lack of a common software interface for
different algorithms, and a knowledge gap between practitioners
and theoreticians, only little work has been devoted to compare
and evaluate newer phase retrieval methods.

II. INTRODUCING PHASEPACK

PhasePack is a software package that contains implementa-
tions of many different phase retrieval methods, and tools for
easily applying them to real and synthetic datasets. The purpose
of PhasePack is to create a common interface for a wide range
of phase retrieval schemes, and to provide a common testbed
using both synthetic data and empirical imaging datasets [24].
PhasePack can also benchmark different algorithms against one
another, and generate performance comparisons with varying
numbers of measurements, signal-to-noise ratio, iterations, and
running time. The package handles single method testing as
well as multiple method comparisons.

The methods in PhasePack differ in numerous ways from
their original descriptions in the literature in order to achieve
improved robustness to different measurement models and to
enable faster convergence. After reviewing the kinds of methods
available in PhasePack in Section III, we will discuss practical
implementation consideration in Section IV.

III. METHODS AVAILABLE IN PHASEPACK

The methods implemented in PhasePack can be divided
into three categories. First, alternating minimization methods
work by iteratively estimating the missing phases of the
measurements, and then solving the linear system Ax = b̃
where b̃ is formed by applying phase estimates to b. This
class of algorithms includes the classical Gerchberg-Saxton
[14] and Fienup [12] methods, in addition to more recent
methods proposed in [9], [23], [28].

Second, many approaches attack the non-convex formulation
directly using least-squares formulations [6], [7], [10], [10],
[21], [32]–[35], [38]. These methods use gradient descent to
minimize an objective of the form

f(x) = ‖ |Âx|p − b̂p ‖2 (1)

where Â and b̂ contain either a subset of the measurements
or a re-weighting of the system Ax = b, and p ∈ {1, 2}
is an integer exponent. Because of the non-convexity of the
formulation (1), these methods require careful initialization to
avoid local minimizers.

The third class of methods convert phase retrieval into a con-
vex problem. This includes the “lifting methods” PhaseLift [8]



and PhaseCut [31], which square the dimensionality of the
problem. PhasePack also implements several low-rank ap-
proximate solvers for large instances of PhaseLift, including
gauge duality methods [1], [13] and sketching methods [37].
Finally, PhasePack contains the newer non-lifting relaxations
PhaseMax [2], [15], [16] and PhaseLamp [11].

IV. BUILDING PRACTICAL IMPLEMENTATIONS

Recent phase retrieval methods have been developed with
the goal of proving rigorous guarantees for random Gaussian
measurement matrices. As a result, methods described in the
literature are not optimized for performance, and may become
unstable when used on non-Gaussian measurements. This is
particularly an issue for variations of Wirtinger flow, which
require the choice of stepsize parameters. This is illustrated
in Figure 1, which compares a “strict” implementation of
Wirtinger flow using the stepsize rules described in [6] to
PhasePack’s implementation with adaptive stepsize.

The implementations in PhasePack depart from the literature
in several ways that make them more robust and efficient. We
discuss several such issues below.

A. Adaptive stepsizes and backtracking

Wirtinger Flow and its variants rely on gradient descent
methods, and are sensitive to the choice of stepsize parameters.
Existing stepsize rules presented in the literature are designed
for Gaussian measurement models, and may be unstable
or slow when used on generic matrices. PhasePack solves
least-squares formulations of the phase retrieval problem
using the general gradient descent solver FASTA [17], which
supports adaptive stepsizes, automated stopping conditions, and
conjugate-gradient acceleration.

This gradient solver automates optimization in several ways.
For stepsize selection, PhasePack uses the Barzilai-Borwein
adaptive method [3]. To guarantee stability, the method uses
a backtracking line-search similar to the classical Armijo line
search [5]. Classical line searches enforce that the objective
decreases monotonically. For non-convex problems where the
local curvature changes rapidly and local minima are prevalent,
monotonic searches may result in excessive backtracking, and
may be more prone to getting stuck in bad local minimizers.
For this reason, several authors have proposed non-monotonic
line searches [18], [19]. The adaptive strategy and line search
rule used by PhasePack is described in detail in [17].

Finally, the solver in PhasePack is capable of using L-BFGS
acceleration (which was studied for phase retrieval in [21]) and
non-linear conjugate gradient methods to speed up convergence.

B. Practical methods for spectral initialization

Non-convex methods for phase retrieval are prone to getting
stuck in local minimizers if they are not initialized properly.
Phasepack includes two main classes of initializers: (i) the
spectral initializer and its variants and, (ii) the orthogonality
promoting initializer. The initializers described in the literature
are optimized for random Gaussian data, and may not perform
well on non-Gaussian real-world data. To be robust to different
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Fig. 1. Reconstruction of a signal using two variants of Wirtinger flow. (blue)
Optimized Wirtinger flow with adaptive stepsize and backtracking line search.
(red) A “strict” implementation of Wirtinger flow using the non-adaptive
stepsize rule described in the original paper.

measurement models, PhasePack initializers depart from the
literature in three main ways: we use a Krylov subspace-based
eigensolver, we re-scale data before pre-processing, and we
re-scale the initialization vector after computation. We discuss
these important differences below after briefly describing how
initialization methods work.

Spectral initialization methods begin by forming the matrix

Y =
1

m

m∑
i=1

T (b2i )aia
H
i (2)

where ai is the ith row of A, and T (·) is a “pre-processing”
function, which is simply the identity in the original spectral
method [28]. These methods are motivated by the observation
that if a is a random Gaussian vector and b is its corresponding
measurement, then we have

Ea[b
2aaH ] = 2xxH + ‖x‖2In. (3)

In fact, the leading eigenvector of (3) is the unknown signal x.
Spectral methods work by approximating the expectation (3)
with the empirical matrix (2), computing the leading eigenvec-
tor, and then scaling it appropriately. A variety of methods have
been proposed with different pre-processing functions, includ-
ing the identity [6], [28], a “truncation” operator that is zero
for small magnitude measurements [10], and a “re-weighting”
operator that shrinks its argument [35]. A rigorous study of
these methods appears in [22]. The default initialization in
PhaseMax uses the “optimal” preprocessing function proposed
in [27], which is

T (z) =
z − 1

z +
√
δ − 1

(4)

where δ = m/n is the number of measurements divided by
the signal dimension.

Orthogonality promoting initializers [33] work by identifying
measurement vectors that are not correlated with the signal x,
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Fig. 2. Reconstruction error as a function of sampling ratio (number of measurements over number of unknowns) for a few algorithms. (left) Signal of length
100 using synthetic Gaussian measurements. (right) Signal of length 256 using an empirical transmission matrix measurement operator.

and finding an initialization vector that is orthogonal to those
uncorrelated vectors. This is done by forming the matrix

Y =
1

|I|
∑
i∈I

aiai
H

‖ai‖2

where I contains the indices of measurement vectors that
produce the smallest measurements. The initializer is then the
eigenvector of Y with smallest eigenvalue.

PhasePack initializers depart from the literature in several
ways. We compute eigenvectors using the iterated Arnoldi
method with restart rather than the power method. This method
lacks the complexity guarantees of the power method, but
exhibits faster convergence than the power method and can
reliably resolve both the leading and trailing eigenvectors.

A more major departure from the literature is in how PhaseP-
ack scales data before pre-processing. The pre-processing
functions T defined in the literature are optimized for random
Gaussian measurement matrices and normalized signals, and
initializers may be highly sub-optimal (or even ill-posed) when
empirical data is used. For this reason, data is re-scaled to have
the same statistics as the Gaussian model before pre-processing.
Note that the measurement operator may be implemented as a
black-box function, and so re-scaling needs to be done without
access to the matrix entries or the underlying signal.

For example, the pre-processing operator (4) is optimized for
Gaussian random measurements of variance 1/n and a signal
of length n [27], and has unpredictable results for any other
model/signal. However, this particular measurement model
produces measurements with Ea|aHx|2 = 1. For this reason,
instead of applying the pre-processing operator to b, we apply
the pre-processing operator to the re-scaled measurement vector
mb
‖b‖ , which has the same mean as the Gaussian model.

Finally, PhasePack concludes initialization with a least-
squares step to determine the optimal length of the initial
vector. Most eigensolvers produce eigenvalues that have unit
length by default, however, the length of the signal may effect
the convergence of the phase retrieval solver. For this reason,
after finding the initializer x̂ we compute the least-squares
solution to

min
α
‖α|Ax̂| − b ‖,

and then replace the initializer x̂ with αx̂. The spectral
initialization methods described above come with their own
scaling routines, however PhasePack’s least-squares scaling
method is more practical for empirical data as it does not
depend on the Gaussian measurement model.

V. EMPIRICAL DATASETS

Public datasets for phase retrieval are scarce, and available
datasets are often difficult to use because of lack of documen-
tation or unusual data formats. One of PhasePacks goals it to
create a simple API for testing methods on empirical datasets.
PhasePack provides routines for unpacking and pre-processing
datasets, and prepares a simple measurement operator A and
measurement vector b that can be used for phase retrieval. The
datasets currently supported by PhasePack were obtained for the
purpose of imaging an object through a diffusive medium, and
are described in detail in [24]. We provide a brief description
of this imaging modality below.

The imaging modality described [24] is for reconstructing an
image from light that has passed through a diffusive medium
(e.g., a light-scattering material like paper or eggshell). Imaging
though such a material is impossible using a conventional
camera, but this can be done using phase retrieval methods. A
binary mask is created by placing a transparent LCD display
in front of a light source. The pixels in this mask can be
made either opaque or clear. An image pattern in loaded onto
the mask, and the mask is illuminated from behind using a
coherent (laser) light source. The light passes through the mask
(creating an image), and then passes through a diffuser. The
diffused light then lands on a photodetector that measures
the intensity of light (but not the phase) at many locations,
producing measurements.

The light pattern (image) passing through the mask is the
unknown signal x. The diffuser is modeled as a “transmission
matrix” A that describes how light passing through each
pixel of the mask effects each of the detectors. Under this
model, the signal received at each detector is given by Ax.
Because standard photodetectors measure intensity and not
phase, the recorded signal is b = |Ax|, and the image must
be reconstructed by phase retrieval.
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Fig. 3. Reconstruction of a 64 × 64 pixel image (modified air force target) using empirical phaseless measurements. Below each algorithm name is the
relative measurement error, defined as ‖|Ax| − b‖/‖b‖, achieved by each method.

This imaging modality is particularly useful for benchmark-
ing phase retrieval methods because the ground-truth image
(the pattern loaded onto the mask) is known, and can be used
to evaluate the quality of reconstructions. A sample mask and
its reconstructions is shown in Figure 3.

VI. EXPERIMENTAL RESULTS

We demonstrate the capabilities of PhasePack using a range
of experiments on real and synthetic data. All of these examples
were produced using the scripts included in the benchmark
sub-folder of the PhasePack distribution. Figure 2 shows the
performance of several algorithms for recovering a random
signal from random Gaussian measurements (left) and from
measurements acquired using a real empirical transmission
matrix (right). Figure 3 shows the reconstruction of an
image from empirical measurements obtained using an optical
device [24].

In most of our experiments, we found that the classical
Fienup [12] and Gerchberg-Saxton [14] methods remain to
be state-of-the-art. However, the re-weighted Amplitude flow

method [32] appears to be highly competitive, if not practically
identical in performance.

Convex methods appear to under-perform their non-convex
counterparts. The convex method PhaseMax [2], [15], [16]
seems to outperform the lifted convex relaxation PhaseLift
(and its approximate low-rank version SketchyCGM [36]) on
real image data. However, PhaseLift outperforms PhaseMax
by a small margin on random Gaussian measurements.

VII. DISCUSSION

PhasePack was created with the goal of providing a unified
framework in which researchers can investigate phase retrieval.
By providing a common interface for different methods, and a
simple API for testing methods on empirical datasets, we hope
that PhasePack can help the community to better understand
the strengths and weaknesses of different methods.
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