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Abstract—We consider the phase retrieval problem, which asks
to recover a structured n-dimensional signal from m quadratic
measurements. In many imaging contexts, it is beneficial to
enforce a sparsity prior on the signal to reduce the number of
measurements necessary for recovery. However, the best known
methodologies for sparse phase retrieval have a sub-optimal
quadratic dependency on the sparsity level of the signal at
hand. In this work, we instead model signals as living in the
range of a deep generative neural network G : Rk → Rn. We
show that under the model of a d-layer feed forward neural
network with Gaussian weights, m = O(kd2 logn) generic
measurements suffice for the `2 empirical risk minimization
problem to have favorable geometry. In particular, we exhibit
a descent direction for all points outside of two arbitrarily
small neighborhoods of the true k-dimensional latent code and
a negative reflection of it. Our proof is based on showing the
sufficiency of two deterministic conditions on the generator and
measurement matrices, which are satisfied with high probability
under random Gaussian ensembles. We corroborate these results
with numerical experiments showing that enforcing a generative
prior via empirical risk minimization outperforms sparse phase
retrieval methods.

I. INTRODUCTION

We study the phase retrieval problem which asks to recover
a structured signal y0 ∈ Rn from m non-linear measurements
b = |Ay0| where A ∈ Rm×n is known, | · | acts entrywise, and
m is to be minimized. The phase retrieval problem arises in a
number of different contexts, with its main area of importance
being X-ray crystallography [7]. In practice, the missing phase
or sign information of the linear measurements is lost during
the measurement process.

Researchers have considered exploiting structural priors on
the signal with the aim of lowering the sample complexity
necessary for recovery. In many imaging contexts, a natural
prior to enforce is that the signal is sparse since images
are compressible, or nearly sparse, with respect to a wavelet
basis. However, sparsity-based methods for phase retrieval
have been met with severe computational bottlenecks as the
best known methods to reconstruct an s-sparse n-dimensional
signal require O(s2 log n) generic measurements. Non-convex
optimization methods, for example, require careful initializa-
tion to succeed, the best of which require O(s2 log n) measure-
ments [3]. Moreover, it has been shown that the semidefinite

programming approach, PhaseLift, provably cannot surpass the
O(s2 log n) bottleneck via direct `1 penalization [10]. Hence
in order to overcome such a complexity barrier, improved
initialization schemes must be made or new forms of reg-
ularization must studied. Here we take the latter approach
through the utilization of generative models borrowed from
deep-learning.

Generative models have become profound tools to ap-
proximate distributions of various complex signal classes.
Generative Adversarial Networks (GANs), for example, have
demonstrated the impressive ability to create photorealistic,
yet synthetic human faces [8] and have pushed forward the
state-of-the-art in image generation. Moreover, they are able
to express such complex classes in a low-dimensional way and
provide a direct parametrization of the natural signal manifold.
Based on this critical attribute, they exhibit the potential to
regularize ill-posed inverse problems for a variety of natural
signal classes, a property we aim to explore in this work in
the context of phase retrieval.

Previous works have also considered using generative mod-
els as priors in a closely related imaging inverse problem,
compressed sensing. [2] showed that, empirically, 5-10X fewer
measurements were necessary for recovery compared to stan-
dard sparsity-based techniques. Furthermore, [6] showed that
the optimization landscape of the `2 empirical risk minimiza-
tion problem over the latent code space of the generator
exhibits favorable geometry for gradient methods under the
model of a random feed forward network. Based on these
positive results for enforcing generative priors in compressed
sensing along with the potential theoretical and practical
limitations of sparse phase retrieval, we consider enforcing
a generative prior as a form of regularization. The present
manuscript is a shortened version of that which appears in [5]
with more extensive experimentation which will be discussed
in Section IV.

II. FAVORABLE GEOMETRY OF EMPIRICAL RISK
MINIMIZATION UNDER A GENERATIVE PRIOR

In this work, we suppose the signal of interest is the output
of a d-layer feed forward neural network with Rectifying
Linear Unit (ReLU) acitvation functions and no bias terms.



Specifically, we assume y0 = G(x0) where G : Rk → Rnd is
defined by

G(x) := relu(Wd . . . relu(W2 relu(W1x)) . . . )

where each Wi ∈ Rni×ni−1 denote the weights in the i-th
layer of our network with k := n0 < n1 < · · · < nd =: n.
Given measurements of the form |Ay0|, we aim to recover
the latent code x0 by solving the following `2 empirical risk
minimization problem:

min
x∈Rk

f(x) :=
1

2

∥∥∥|AG(x)| − |Ay0|
∥∥∥2 (II.1)

where ‖ · ‖ is the `2 norm. Due to the non-linearities in-
troduced by the measurements and generative model, this is
a non-convex optimization problem. Theoretically, spurious
local minima may exist, prohibiting gradient descent with
random initialization from succeeding. However, our main
result asserts that with high probability, the objective function
has favorable geometry for gradient methods with information
theoretically optimal sample complexity with respect to the
latent code dimension. To formally state our result, we define
some notation. Note that while the objective function is
not differentiable, its one-sided directional derivative exists
everywhere, i.e. for any x ∈ Rk and direction v, Dvf(x) :=

limt→0+
f(x+tv)−f(x)

t exists.

Theorem II.1. Fix ε > 0 such that K1d
8ε1/4 6 1 and let

d > 2. Suppose G is such that Wi ∈ Rni×ni−1 has i.i.d.
N (0, 1/ni) entries for i = 1, . . . , d. Suppose that A ∈ Rm×nd
has i.i.d. N (0, 1/m) entries independent from {Wi}. Then if
m > Cεdk log(n1n2 . . . nd) and ni > Cεni−1 log ni−1 for i =
1, . . . , d, then with probability at least 1−

∑d
i=1 γnie

−cεni−1−
γm4k+1e−cεm, the following holds: for all non-zero x, x0 ∈
Rk, there exists vx,x0

∈ Rk such that the one-sided directional
derivatives of f satisfy

D−vx,x0 f(x) < 0, ∀x /∈B(x0,K2d
3ε1/4‖x0‖)

∪ B(−ρdx0,K2d
14ε1/4‖x0‖) ∪ {0},

Dxf(0) < 0, ∀x 6=0,

where ρd > 0 converges to 1 as d→∞ and K1 and K2 are
universal constants. Here Cε depends polynomially on ε−1, cε
depends on ε, and γ is a universal constant.

The theorem essentially states that, with a sufficient number
of Gaussian measurements and a sufficiently expansive ReLU
network with Gaussian weights, the constructed descent direc-
tion vx,x0

does not vanish outside of two small neighborhoods
of the minimizer and a negative multiple of it. This eliminates
the existence of spurious local minima away from these to
neighborhoods. We first show the sufficiency of two deter-
ministic conditions on the measurement matrix and weights
of our generative model for this result to hold. We then prove
that measurement matrices and weights with i.i.d. Gaussian
entries satisfy these conditions with high probability.

The first condition concerns the spatial arrangement and
number of neurons in our network. We first define the fol-
lowing: for a matrix W ∈ Rn×k and x ∈ Rk, let W+,x :=

diag(Wx > 0)W . This quantity can be viewed as determining
which neurons are active in the neural network when the input
to it is x.

Definition II.2. We say that W satisfies the Weight Distribu-
tion Condition (WDC) with constant ε > 0 if for all x, y ∈ Rk,∥∥W>+,xW+,y −Qx,y

∥∥ 6 ε

where

Qx,y :=
π − θx,y

2π
Ik +

sin θx,y
2π

Mx̂↔ŷ.

Here θx,y = ∠(x, y), x̂ = x/‖x‖, ŷ = y/‖y‖, Ik is the k × k
identity matrix, and Mx̂↔ŷ is the matrix that sends x̂ 7→ ŷ,
ŷ 7→ x̂, and z 7→ 0 for any z ∈ span({x, y})⊥.

Note that if Wij ∼ N (0, 1/n), then E[W>+,xW+,y] = Qx,y
for any x, y ∈ Rk. In [6], it was shown that Gaussian W
satisfies the WDC with high probability:

Lemma II.3 (WDC). Fix 0 < ε < 1 and suppose W ∈ Rn×k
has i.i.d. N (0, 1/n) entries. Then if n > Cεk log k, then with
probability at least 1 − 8n exp(−γεk), W satisfies the WDC
with constant ε. Here Cε and γ−1ε depend polynomially on
ε−1.

The assumption that the weights of our generative neural
network follow a Gaussian distribution is supported by recent
results showcasing real neural networks, post-training, exhibit-
ing statistics similar to Gaussians [1]. In any case, we note that
the conditions we impose on the generator and measurement
matrix are deterministic, meaning they could potentially be
satisfied with other distributions.

The next condition quantifies whether the measurement
matrix behaves like a Gaussian when acting on the range of
our generative model. For A ∈ Rm×n and z ∈ Rn, define
Az := diag(sgn(Az))A where sgn : R → R acts entrywise
and is defined by sgn(a) = a/|a| for a 6= 0 and 0 otherwise.
Note that for any z ∈ Rn, |Az| = Azz.

Definition II.4. We say that A satisfies the Range Restricted
Concentration Property (RRCP) with constant ε > 0 if for any
x, y ∈ Rk, the matrices AG(x) and AG(y) satisfy the following
for all x1, x2, x3, x4 ∈ Rn :

|〈(A>G(x)AG(y) − ΦG(x),G(y))(G(x1)−G(x2)), G(x3)−G(x4)〉|
6 31ε‖G(x1)−G(x2)‖‖G(x3)−G(x4)‖

where

Φz,w :=
π − 2θz,w

π
In +

2 sin θz,w
π

Mẑ↔ŵ.

Note that if Aij ∼ N (0, 1/m), then for any z, w ∈ Rn,
E[A>z Aw] = Φz,w. In our work, we establish that Gaussian A
satisfies the RRCP with high probability:

Lemma II.5. Fix 0 < ε < 1 and suppose A ∈ Rm×n has
i.i.d. N (0, 1/m) entries. If m > Cεkd log(n1n2 . . . nd), then
with probability 1−γm4k+1 exp(−cεm), A satisfies the RRCP
with constant ε. Here γ is a universal constant and Cε and
c−1ε depend polynomially on ε−1.



Proving this particular property for a Gaussian measure-
ment matrix A requires establishing a generalized Restricted
Isometry Property for A>z Aw uniformly over all elements
z, w ∈ range(G). Due to the ReLU non-linearities, the
generative model G is piecewise linear. Thus its range lies
in the union of finitely many subspaces. Hence one must
control A>G(x)AG(y) over these finitely many subspaces for all
x, y ∈ Rk. This quantity that can be interpreted as a spatially
dependent sensing matrix.

Our main deterministic result shows that these two condi-
tions on the generator and measurement matrix are sufficient
to establish favorable geometry of the empirical risk minimiza-
tion problem:

Theorem II.6. Fix ε > 0 such that K1d
8ε1/4 6 1 and let

d > 2. Suppose that G is such that Wi ∈ Rni×ni−1 satisfies
the WDC with constant ε for all i = 1, . . . , d. Suppose A ∈
Rm×nd satisfies the RRCP with constant ε. Then the same
conclusion as Theorem II.1 holds.

III. A VARIATION OF GRADIENT DESCENT

Based on our geometric result concerning the energy land-
scape of the empirical risk minimization problem, gradient
descent would converge either to a neighborhood of the true
solution or a negative multiple of it. In order to avoid the latter
neighborhood, we propose a variation of gradient descent to
converge to the true solution. To aid in our exposition of the
algorithm, consider Figure 1 which showcases the objective
function in expectation which can be interpreted as the case
when the number of measurements m→∞ and the network
layers become arbitrarily expansive.

Fig. 1. Surface plot of (II.1) with x0 = [1 0]> ∈ R2 and m→∞.

We see that there are three critical points: the global
optimum x0, a negative multiple of the true solution, and
the origin which is a local maximum. Moreover, the function
value near the negative multiple is higher than near the true
solution. While gradient descent may, in principle, be attracted
to the negative multiple, we can exploit this property of the
objective function by checking the objective function value
of our current iterate and its negation, and then choosing the
result with lower objective function value as our main iterate.

This would allow us to escape the neighborhood of the critical
point and move towards the true minimizer.

To formally describe our algorithm, we define some further
notation. Let Wi ∈ Rni×ni−1 denote the neurons in the i-th
layer of our network. Then, for any x ∈ Rk and i ∈ [d], define

Wi,+,x := diag(Wi−1,+,x . . .W2,+,xW1,+,xx > 0)Wi.

Similarly to the definition presented in the WDC, this quantity
determines which neurons are active in the i-th layer of our
network when the input to the generative model is x. Finally,
let Π1

i=dWi = Wd . . .W2W1. To initialize the algorithm,
choose a random initial iterate x1 6= 0. Then, for each
i = 1, 2, . . . , compute the descent direction

vxi,x0
:= (Π1

i=dWi,+,xi)
>A>G(xi)

(|AG(xi)| − |Ay0|) .

This is the gradient of our objective function when it is
differentiable. It is important to note that, even at points of
non-differentiability, this descent direction is well-defined due
to the definitions of AG(x) and each Wi,+,x. Once computed,
we can then take a step in the direction of the negative gradient
−vxi,x0

as in standard gradient descent. However, prior to
taking this step, we check the objective function value for our
current iterate and its negation. If the objective function value
is lower for the negation, we switch to that point, compute the
descent direction with respect to it, and update the iterate. The
intuition is that, if gradient descent begins to converge toward
the negative multiple, this negation step will choose a point
of lower objective function value, which will be closer to a
neighborhood of the minimizer. Algorithm 1 formally outlines
this process.

Algorithm 1 Deep Phase Retrieval (DPR) Gradient Method
Require: Weights Wi, measurement matrix A, observations
|Ay0|, and step size α > 0

1: Choose an arbitrary initial point x1 ∈ Rk \ {0}
2: for i = 1, 2, . . . do
3: if f(−xi) < f(xi) then
4: xi ← −xi;
5: end if
6: vxi,x0

= (Π1
i=dWi,+,xi)

>A>G(xi)
(|AG(xi)| − |Ay0|);

7: xi+1 = xi − αvxi,x0
;

8: end for

IV. IMAGE EXPERIMENTS ON MNIST

We now consider the task of recovering a natural image
y0 ∈ Rn from phaseless linear measurements |Ay0| where A ∈
Rm×n has i.i.d.N (0, 1) entries. The images are taken from the
test set of the MNIST Handwritten digit database. We will be
comparing our results to three sparse phase retrieval methods:
SPARTA [11], CoPRAM [4], and Thresholded Wirtinger Flow
(TWF) [3]. We will refer to our algorithm as DPR throughout.

As our generative model, we used the decoder network of
a pretrained Variational Autoencoder (VAE) from [2]. The
decoder network is of size 20− 500− 500− 784. To recover
the image y0 from measurements |Ay0|, we find the closest



image in the range of our generative model G that best fits
our measurements in an `2 sense. In these experiments, we
use a variation of Algorithm 1 to solve Equation (II.1). We
found that, in practice, the negation step would only occur at
the beginning of the algorithm. Hence instead of checking
the objective function value of the negation at each step,
we choose the best solution G(x̂) from two final outputs
of gradient descent: one initialized with a random point x1
and the other with its negation −x1. As our gradient descent
scheme, we used the Adam optimizer [9].

For the sparse phase retrieval methods, we performed sparse
recovery by transforming the images using the Daubechies-
4 Wavelet Transform. More specifically, we considered the
vector of wavelet coefficients v0 = Ψy0 which is compress-
ible. Since the wavelet transform Ψ is orthogonal and the
measurement matrix A is Gaussian, AΨ> and A are equal in
distribution due to the rotational invariance of A. Hence, in-
stead of recovering v0 from measurements |Ay0| = |AΨ>v0|,
we recover v0 from |Av0|. We then take an inverse wavelet
transform to retrieve the approximate image. To appropriately
take the wavelet transform, we pad the images with zeros
uniformly around the border so that they are of size 32× 32.
If a sparse recovery algorithm required a sparsity parameter,
we ran the algorithm with a range of sparsity parameter
values, choosing the best reconstruction in terms of lowest
reconstruction error. The resulting images generated by our
algorithm were also uniformly padded with zeros around the
border to obtain 32× 32 images.

Fig. 2. Each algorithm’s average reconstruction error (top) and mean SSIM
(bottom) over 10 images from the MNIST test set for different numbers of
measurements.

We attempted to reconstruct 10 images from the MNIST
test set. We allowed 5 random restarts for each algorithm and
recorded the result with the least `2 reconstruction error per

pixel. In addition, we calculated the Structural Similarity Index
Measure (SSIM) [12] for each reconstruction and computed
the average for various numbers of measurements. The results
in Figure 2 demonstrate the success of our algorithm with very
few measurements. For 200 measurements, we can achieve
accurate recovery with a mean SSIM value of over 0.9 while
other algorithms require 1000 measurements or more. In terms
of reconstruction error, our algorithm exhibits recovery with
200 measurements comparable to the alternatives requiring
750 measurements or more, which is where they begin to
succeed. We finally present a comparison of qualitative results
for low numbers of measurements in Figure 3.

Fig. 3. Each algorithm’s reconstructed images with 100 measurements (left)
and 300 measurements (right). If an image is blank, then the reconstruction
error between the blank image and the original image was lower than that
of the algorithm’s reconstructed image and the original image. We note that
even for as few as 100 measurements, nearly all of DPR’s reconstructions are
semantically correct.
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