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Abstract—In the United States of America where there is no
national health care, All-Payer Claims Databases provide great
resources to investigate and address disparities in access to,
utilization, and outcomes of care. Race/ethnicity being missing,
however, is a bottleneck on its usage. In most health claim
databases Race/ethnicity only observed to 3-5% of the obser-
vations, causing a great missing data problem. We try to recover
race/ethnicity information for incomplete observations based on
studies of the (3%) complete observations. To emulate the data
structure, an analysis of birth records from Connecticut is done
where the race/ethnicity information is complete, in order to
assess competing models performances. While the Connecticut-
based full model based on logistic model proposed achieves over
80% prediction accuracy, we are interested in comparing this
model performance to more complex machine learning methods
and evaluate prediction. An empirical study is presented.

Index Terms—Health insurance claims; Race/ethnicity; Impu-
tation; Missing data; Decision Tree.

I. INTRODUCTION

In the United States of America (USA) where no national
health care is available, All-Payer Claims Databases (APCDs),
which are currently established or in formation in 25 states,
offer great opportunities to studies of health disparities. How-
ever, the majority of patients’ self-reported race and ethnicity
information is missing in almost all these APCDs. Only
approximately 3% of commercially insured beneficiaries have
this information available. This missingness greatly limited the
usage of APCDs in analysis of racial and ethnic disparities in
the utilization and outcomes of care.

To date, the most common missing data procedure is com-
plete case analysis (CCA), in which every observation with
incomplete data is being eliminated from the data. It has been
shown that CCA unbiased in very limited situations, has a
great impact on measures of variance and covariance, and
almost always is inefficient. In addition, in situations with large
amounts of missing data, most of the data can be eliminated
under this procedure. Therefore, this is not a viable solution.

Various indirect methods have been proposed to infer or
assign race/ethnicity based on patient information [1]–[4].
Among these approaches, [3], [4] developed Bayesian Sur-
name and Geocoding (BSG) and Bayesian Improved Surname
and Geocoding (BISG) methods that combine information
from people’s surnames and their residential geocoding to
produce posterior estimates of probability for one to be in
different race/ethnicity groups. These methods, however, have
not been implemented in scenarios where a majority of the
outcome variable is missing.

To overcome the missing data barrier, and utilize informa-
tion from other sources than only geocoding and surname,
we proposed a multinomial logistic regression approach that
calculates the probability vector of individuals to be in dif-
ferent race/ethnic groups. Using the statewide birth registry
records of Connecticut (CT), a multinomial logistic regression
model is trained on a small subsample of the data, and tested
on a testing dataset of 50% size of the entire dataset. The
proposed method has been shown to work better than the BSG
and BISG methods [5]. Here, we compare the performance of
the methods proposed in [5] with popular machine learning
algorithms, such as decision trees, and present the results.

II. DATA

In order to evaluate the competing models, we needed
to have a complete data. For that we used the statewide
birth registry obtained from the Connecticut Department of
Public Health. Race is available in this dataset, and therefore
we are able to compare the predicted race with the truth.
Using the geographical information of Connecticut tracts, and
the addresses provided by parents in the birth registry, after
subjects with invalid or out-of state addresses are removed,
the 162,188 observations, who were born between 2009 and
2013, were geocoded and matched with 827 tracts. Following
the common procedure in the field [6], the race/ethnicity for
each child were defined to be the self-reported race/ethnicity
of the mother. Race/ethnicity was grouped into four big
categories: White non-Hispanic (White, 57%), Black non-
Hispanic (Black, 13%), Hispanic (22%), and Other (8%).

It is important to note, that more complex specification
of the Race and Ethnicity distribution is possible. However,
for simplicity and in order to introduced the methodology a
simplistic definition of Race and ethnicity is used.

Each mother’s surname is associated with a vector of prob-
abilities of being in each of the four groups based on results
from the 2010 Census. For example, “Nguyen” gets (1%, 0%,
1%, 98%), and “Smith” gets (71%, 23%, 2%, 4%). If a name
is not found in the surname dictionary from 2010 Census, a
non-informative (25%, 25%, 25%, 25%) vector is associated
with it. This 4-dimensional probability vector included in
the predictors of the model. In addition, the distribution of
race/ethnicity in Connecticut tracts are obtained from the 2010
Census, and represented in percentages and coded consistent
with the four race/ethnicity categories, which makes another



4-dimensional probability vector, and is included in the model
as well.

In addition, several other demographic covariates have been
identified. The insurance payment method for baby delivery is
grouped into four categories: private (60%), Medicaid (35%),
None/Self (4%), and Other Insurance (1%). The age of the
mother when giving birth is calculated, having a mean of
29.9 and standard deviation of 6.1. A binary variable for
fathers’ information being missing is introduced. There are
11% father missing cases. These covariates are available in
the birth certificate, but they represent the ability to use other
covariates in the future when the APCD data are used.

III. METHODS

A. Proposed Models
The dataset was partitioned into two equally-sized training

and testing sets. To mimic the missingness of race/ethnicity,
97% race/ethnicity information in the training data is re-
moved (completely at random), leaving only 3%, i.e., 2,432
informative observations. Next, based on the 3% informative
observations, two multinomial logistic regression models were
fitted, one using all information available and denoted the
CT Based Full (CTBF), and the other using all but the
three demographic covariates denoted the CT Based Reduced
(CTBR). White category was used as the reference category.
Predictions were made using the coefficients obtained from
the models on the testing dataset, and compared to the true
race/ethnicity. Multiple performance measures were used.

As a comparison, we applied algorithms in machine learning
on the same 3% of training dataset. The algorithms considered
include neural network, k-nearest neighbors, and decision
trees [7].

IV. PERFORMANCE MEASURES

Two performance measures discussed in Elliott et al. [3]
are used. Denoting the true prevalence of race/ethnicity in
the testing dataset as (pw, pb, ph, po), each corresponding to
one group, and the predicted prevalence for the testing dataset
as (qw, qb, qh, qo), the weighted measure of error in predicted
prevalence is defined as

Errorprevalence = |pw − qw| · pw + |pb − qb| · pb
+ |ph − qh| · ph + |po − qo| · po.

The other measure used by Elliott et al. [3] is the weighted
correlation of each individual’s true race/ethnicity and their
predicted race/ethnicity, where the weights are the true preva-
lence, (pw, pb, ph, po). For all observations in the testing
dataset, a vector of indicators rwt that equals 1 if the true race
is White, and 0 otherwise. Another vector of indicators rwp can
be obtained for the predictions, equaling 1 if the predicted race
is White, and 0 otherwise. The correlation coefficient between
rwt and rwp can be obtained and denoted as corrw. Similarly,
we can calculate corrb, corrh, and corro, as correlation coeffi-
cients of black, hispanic and other respectively. The weighted
correlation is calculated as:

Correlationweighted = corrw ·pw+corrb ·pb+corrh ·ph+corro ·po.

TABLE I
COMPARISON OF IMPUTED RACE/ETHNICITY TO SELF-REPORTED
RACE/ETHNICITY FOR TESTING SUBSET OF CT BIRTH RECORDS

(n = 81, 094)

CT Based Reduced Model (a)

Self-reported, n

White Black Hispanic Other Total
Imputed, n
White 41,220 4,574 3,118 2,610 51,522
Black 1,708 5,032 624 289 7,653
Hispanic 3,118 623 14,275 337 18,353
Other 324 78 60 3,104 3,566
Total 46,370 10,307 18,077 6,340 81,094

Sensitivity, % 89 49 79 49
Sepcificity, % 70 96 94 99
Cohen’s Kappa 0.62
Weighted Error 0.044
Correlationweighted 0.623
Correct rate % 78.47

CT Based Full Model (b)

Self-reported, n

White Black Hispanic Other Total
Imputed, n
White 42,330 3,078 2,971 2,388 50,767
Black 1,135 6,398 703 324 8,560
Hispanic 2,479 717 14,310 308 17,814
Other 426 114 93 3,320 3,953
Total 46,370 10,307 18,077 6,340 81,094

Sensitivity, % 91 62 79 52
Sepcificity, % 76 97 94 99
Cohen’s Kappa 0.68
Weighted Error 0.037
Correlationweighted 0.688
Correct rate % 81.83

The measures described above are also supplemented with
another four common measures of accuracy: sensitivity &
specificity [8], Cohen’s Kappa [9], and percentage of correct
predictions.

V. RESULTS AND PERFORMANCE COMPARISON

For the 81,094 observations in the testing dataset, we
obtained the predictions given by the CTBF and CTBR,
formulated the confusion matrix [10], and computed the per-
formance measures described in Section IV. We report the
confusion matrices, together with the performance metrics,
in Table I. The results indicates that by combining the in-
formation from surnames and census tract race distributions,
we are able to predict one’s race/ethnicity with around 80%
accuracy. Furthermore, upon closer investigation, we found
that tract race/ethnicity distributions are highly significant for
the prediction of minorities, and the regression coefficients
of mother’s age and father missing are highly significant for
specific race/ethnicity groups, which indicates the helpfulness
of additional information other than surname and address.

Using the same set of covariates as the CTBF, a neural
network is fitted using the nnet function in the R package
caret. The number of hidden units were tuned on values from
1 to 10, and the parameter for weight decay was tuned on



TABLE II
PERFORMANCE OF NEURAL NETWORK MODEL (n = 81, 094)

Self-reported, n

White Black Hispanic Other Total
Imputed, n
White 41,912 2,686 2,941 2,300 49,839
Black 1,500 6,838 767 386 9,491
Hispanic 2,519 683 14,286 321 17,809
Other 439 100 83 3,333 3,955
Total 46,370 10,307 18,077 6,340 81094

Sensitivity, % 90 66 79 53
Sepcificity, % 77 96 94 99
Cohen’s Kappa 0.69
Weighted Error 0.029
Correlationweighted 0.690
Correct rate % 81.84

TABLE III
PERFORMANCE OF K-NN MODEL (n = 81, 094)

Self-reported, n

White Black Hispanic Other Total
Imputed, n
White 42,408 3,201 3,534 2,378 51,521
Black 1,249 6,393 682 329 8,653
Hispanic 2,274 611 13,777 337 16,999
Other 439 102 84 3,296 3,921
Total 46,370 10,307 18,077 6,340 81,094

Sensitivity, % 91 62 76 52
Sepcificity, % 74 97 95 99
Cohen’s Kappa 0.67
Weighted Error 0.044
Correlationweighted 0.676
Correct rate % 81.23

(0, 0.1, 1, 2). Correct prediction rate was used to select the
best performing model. The final model was selected to have
3 hidden units, and has 2 as the weight decay parameter. The
detailed results are reported in Table II. It can be seen that,
compared to the CTBF, the neural network model achieves al-
most the same prediction accuracy rate. While having slightly
improved weighted error and weighted correlation, it still fails
to further improve the relatively low sensitivity for the Other
category.

Another k-nn model is fitted using the knn3 function, also
in the caret package. The number of neighbors, k, was tuned
on a sequence of values (1, 5, 9, 13, 17, 21, 41, 61, 81). Again,
correct prediction rate was used as the criterion for evaluation.
The optimal value was selected to have k = 21. The results
are shown in Table III. Overall the k-nn model provides
slightly inferior but still comparable performance than the
CTBF. It is worth noticing that the k-nn has lower specificity
for White than the CTBF and the neural network model. One
possible reason is the fact that White is the dominant class,
and prediction of a minority can be significantly biased when
there are observations in the White category that resemble it.

In addition to neural network and k-nn, two tree-based
models are considered: random forest, and stochastic gradient
boosting. A random forest model is fitted using the random-

TABLE IV
PERFORMANCE OF RANDOM FOREST MODEL (n = 81, 094)

Self-reported, n

White Black Hispanic Other Total
Imputed, n
White 41,412 2,671 3,192 2,097 49,372
Black 1,551 6,679 825 412 9,467
Hispanic 2,647 740 13,850 351 17,588
Other 760 217 210 3,480 4,667
Total 46,370 10,307 18,077 6,340 81,094

Sensitivity, % 89 65 77 55
Sepcificity, % 77 96 94 98
Cohen’s Kappa 0.67
Weighted Error 0.025
Correlationweighted 0.672
Correct rate % 80.67

TABLE V
PERFORMANCE OF STOCHASTIC GRADIENT BOOSTING MODEL

(n = 81, 094)

Self-reported, n

White Black Hispanic Other Total
Imputed, n
White 42,381 3,164 3,079 2,374 50,998
Black 1,161 6,441 900 364 8,866
Hispanic 2,364 577 14,014 285 17,240
Other 464 125 84 3,317 3,990
Total 46,370 10,307 18,077 6,340 81,094

Sensitivity, % 91 62 78 52
Sepcificity, % 75 97 95 99
Cohen’s Kappa 0.68
Weighted Error 0.039
Correlationweighted 0.684
Correct rate % 81.57

Forest function. For the random forest model, as under our
hypothetical missing-majority setting, only 3% observations in
the training data have observed race and we only have 2,432
such complete observations, in an effort to control over-fitting,
50 trees were used. The number of variables was fixed at 8
for random sample at each split. As seen from Table IV, the
random forest model also performs similarly to the proposed
CTBF. Compared to the CTBF, it has higher sensitivity for
Black, but slightly lower sensitivity for White. The specificities
are very close. It is worth noticing that, the random forest
model provides better estimation of overall prevalence.

For the stochastic gradient boosting model (GBM), provided
by the R package gbm, a 5-fold cross-validation is used. The
tree depth was chosen to be 1, i.e., we use decision stumps.
The minimum number of observations per node was set to be
10. The learning rate was set to be 0.1. From Table V, the
GBM performs better in terms of correct rate than the random
forest. Similar to the random forest, it does not achieve better
predictions than the CTBF.

VI. CONCLUSION

We compared performance of CTBF with four popular
machine learning procedures: neural network, k-nn, random



forest and GBM, when only 3% of race is known and we want
to predict the rest. While all four methods provided decent
predictions in terms of different measures, none is significantly
better than the CTBF.

In addition, training such models usually requires more
complex and time consuming computation, while a multino-
mial logistic regression can be obtained rather quickly on a
common laptop. This indicates that the proposed multino-
mial logistic regression model is able to utilize nearly all
information in the dataset in an appropriate way. Compared
to more complex machine learning methods, the regression
parameters are also informative. They provide insight as to
which variables are highly indicative of which race/ethnicity.
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