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The digital technology, though more than fifty years old, is increasingly
yielding data which can be used as a part of statistical infrastructure. Ad-
vances in computational resources such as processing powers, storage, de-
velopment of algorithms and other computational infrastructure have made
many administrative records, transactions, electronic health records etc use-
able by statisticians in combination with the traditional data sources such
as probability sample based surveys, and designed data collection activities.
The challenge of combining information from these multiple data sources
needs to be met by a principled approach for drawing inferences that bor-
rows strength from the two paradigms for drawing statistical inferences:
(1) A Frequentist or repeated sampling perspective and (2) the Bayesian
framework. The goal of this paper is to outline a set of issues, propose
methodology and evaluation strategies in the context of using multiple im-
putation as a method for constructing inferences from the assemblage data
sources.

To motivate the problem, consider a simple context with three data
sources: A survey or designed data collection activity (say, activity, A)
producing a set of variables (X,Y ), and the two organic or non-designed
data collection activities (say, activities B and C) producing the sets of
variables, (X,Z) and (Y,Z), respectively. Obviously, for a variety of reasons,
there may be some missing values in all there sets of variables X, Y and
Z. In addition, when these three data sources are appended as single data
set, the non-measured sets Z in data A, Y in Data B and X in Data C
are also missing, but missing “by assembly”. The goal then is to construct
inferences from the assembled data set and validate the inferences, internally,
and, possibly, externally, using some other information.

The situation given above can be generalized to more than three data
sources and more complex patterns of missing data. Though, it may be
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unlikely, let U be a collection of variables available in all data sources. How-
ever, for simplicity, continue with three data source example to illustrate
the methodological development and evaluation strategies. Suppose that
nA, nB and nC , respectively, be the number of subjects in the three data
sources. Also, let pX , pY and pZ denote the numbers of variables in each
set, X, Y and Z, respectively. When the data set is appended, the full or
potential complete data set, D, has n = nA + nB + nC subjects (rows) and
p = pX + pY + pZ variables (columns). Let R be n × p matrix of response
or observed indicators, taking the value 1, if the corresponding entry in the
full data set is observed and 0, otherwise.

With a slight abuse of notation, let Xobs denote all the values of variables
in the set X, across all the subjects in all data sources. Similarly for Yobs

and Zobs. Let Xmis, Ymis and Zmis denote all the values that are missing
in these three sets of variables across all the data sources. Let Dobs =
{Xobs, Yobs, Zobs}, Dmis = {Xmis, Ymis, Zmis} and D = {Dobs, Dmis}.

A Bayesian statistical analyst (See Gelman et al (2004)) conceptualizes
the the object of inference as a function of an unknown parameter (possibly
a vector), θ, in a potential full data generation model, f(X,Y, Z|θ). Let
π(θ) denote the prior density (or mass) function for θ. Suppose that the full
data set is observed and D = d is a particular realization of values in D, the
Bayes theorem is used to construct the posterior density,

p(θ|d) =
L(θ|d)π(θ)

∫
L(θ|d)π(θ)dθ

,

where L(θ|d) is the likelihood function (proportional to the joint distribu-
tion of all n values of p-dimensional vector, evaluated at the realized value
of the data d). The posterior density given above is the crux of Bayesian
inferences about θ and is constructed through summaries of the posterior
distribution such as central tendency, spread, quantiles etc. Much of the
modern Bayesian analysis involves drawing values of θ from its posterior
distribution and then using the draws to study the features of the distribu-
tion.

Obviously, the above method cannot be implemented because not all val-
ues in d are known. Only the realized values of Dobs = dobs are available and
Dmis is not known. The inference needs to be extended into inferring about
Dmis and θ. Additional assumption is needed about the nature of missing-
ness in D. One plausible assumption is that the data are missing at random
(MAR) (Rubin (1976)), in a sense that the missing values are “unbiasedly”
predictable based on the observed data, or any other additional external
information, E . Suppose that a predictive model, Pr(Dmis|dobs, E) can be
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constructed, then this assumption implies that the differences between any
randomly drawn value from the predictive distribution, say, D∗

mis, and the
true or actual unobserved value Dmis is a collection of random noises. Note
that this assumption is not empirically verifiable as the actual values of Dmis

are not known. It is critical, therefore, to make sure that dobs (and, possibly,
E) are adequate to construct a predictive distribution for the missing values
and satisfy this assumption. The MAR assumption may also stated in an
equivalent form in terms of,

Pr(R|dobs, Dmis, E) = Pr(R|dobs, E),

a response propensity model indicating which values in D are observed or
missing.

Under the stated assumption about the mechanism for the missing data,
a modified Bayesian analysis involves constructing,

p(θ|dobs, E) =

∫
L(θ|dobs, Dmis)π(θ)f(Dmis|dobs, E)dDmis∫ ∫
L(θ|dobs, Dmis)π(θ)f(Dmis|dobs, E)dDmisdθ

Multiple imputation method (Rubin (1987)), essentially, involves ap-
proximating the above posterior density, by drawing independent values,
d
∗(l)
mis, l = 1, 2 . . . ,M , from the predictive distribution, Pr(Dmis|dobs, E), and

then constructing,

p(θ|dobs, E) ≈
1
M

M∑

l=1

p(θ|d∗(l))

where d∗(l) = {dobs, d
∗(l)
mis} is the lth “completed-data”.

Drawing values of θ from this finite mixture approximation is rather
straightforward. For instance, draw, say K, values from each of the M com-
pleted data posterior distribution of θ and then use the K×M values of θ to
study the features of the posterior distribution. Raghunathan, Berglund and
Solenberger (2018) discuss a moment-based approximation to the mixture
posterior density using Rubin’s framework (1987).

The critical issue, however, is the construction of predictive distribution
for the missing values. A straightforward approach is to develop a joint dis-
tribution of all the variables and then construct the conditional predictive
distribution of the missing set of values given the observed set of values.
However, hundreds of different types of variables may be involved in these
data sets. Furthermore, there may be structural dependencies across of
variables (such as years smoked and age, repeated measures of heights of
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children etc, as well as bounds for the missing values) are common occur-
rences. It is nearly impossible to build a joint distribution for these variables
in such complex situations. A popular alternative approach is the sequen-
tial regression (also called chained equations and flexible conditional speci-
fications)approach (Raghunathan et al (2001)) which specifies p regression
models, each using all other variables as predictors (some variable selection
and/or dimensionality reduction techniques may be used to fit the regression
models). The missing values are then imputed by drawing values from the
corresponding predictive distribution. The regression models can be linear
or non-linear, generalized linear or non-linear, semi-parametric, nonpara-
metric etc, depending upon the variable with missing values. Imputation
are carried out in a cyclical manner to exploit fully the correlation across all
the variables. This method has been implemented in many statistical soft-
ware packages such as SAS, STATA, and R. A particular implementation
recommended for a variety of use is IVEware (www.iveware.org).

This paper proposes refinement to this basic methodology by building
model checking and evaluation, any refinement of models, if necessary, in an
adaptive fashion to ensure that the imputed values exhibit the properties
of the observed values, under the missing at random assumption. The un-
derlying goal is to ensure that each completed data set can be viewed as a
potential representative sample from the population. Any external informa-
tion available will be incorporated in the model building process. All these
efforts are integrated using machine learning framework. Validation of the
model is also built in the sequential process using the frequentist approach.

The fundamental goal of the proposed procedure is to ensure that

Pr(Vi,mis|Dobs,−i, E) ≈ Pr(Vi,obs|Dobs,−i, E)

where Vi is the variable being imputed, Vi,mis are the imputed values, Vi,obs

are the observed values and Dobs,−i is the collection of all the observed
values in all variables, other than Vi. This should be satisfied for all the
variables in the appended data sets at every cycle of sequential regression
modeling efforts. The adaptive nature of this proposed procedure is rather
obvious. An example of combining data from two surveys and administrative
data sources is used to illustrate the methodology. For more details see
Bondarenko and Raghunathan (2016). Multiple measures of the distances
between the above two distributions are used. A simulation study evaluates
the repeated sampling properties of estimates derived from the imputed data
sets.
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