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Abstract—In many modern applications, considerations like
privacy, security and legal doctrines like the GDPR put
limitations on data storage and sharing with third parties.
Specifically, access to individual level data points is restricted
and machine learning models need to be trained with aggre-
gated versions of the datasets. Learning with aggregated data is
a new and relatively unexplored form of semi-supervision. We
tackle this problem by designing aggregation paradigms that
conform to certain kinds of privacy or non-identifiability re-
quirements. We further develop novel learning algorithms that
can nevertheless be used to learn from only these aggregates.
We motivate our framework for the case of Gaussian regression,
and subsequently extend our techniques to subsume arbitrary
binary classifiers and generalised linear models. We provide
theoretical results and empirical evaluation of our methods on
real data from healthcare and telecom.

I. Introduction

While most machine learning paradigms assume con-
stant training-time access to a full set of raw non-
aggregated ”individual level” data points (e.g., individual
rows of a data table), this is not a feasible scenario in
many situations involving sensitive data – instead, the
data is only accessible to a learner for a limited period of
time, after which it must be stored in an aggregated form
(e.g., column averages for the same data table). This is a
common scenario in many technology driven domains like
the telecommunication industry, where legal requirements
(e.g. FTC rules [4]) mandate the erasure of individual
consumer data after a specified period. Along similar lines,
privacy considerations in domains like healthcare [13] limit
dissemination of patient records to third parties. Finally,
when data needs to be transferred over an expensive or
less secure channel, it is preferable to summarise the data
before transfer[15].

In all such cases, any machine learning solution has
to operate under the constraint that data will only be
available in small subsets for brief periods, after which
they need to be aggregated by the system, and the
original dataset purged in its entirety. Existing work from
privacy[6, 7], sketching [12] or online learning [3] cannot be
applied directly to our setup, since they require repeated
data access or modify the relationship between observed
variables. At the other end of the pipeline, ecological
fallacy concerns put up additional challenges in learning
from aggregated data [2, 14].
Our work is motivated by two complementary objectives:

1) design aggregation paradigms that protect data se-
curity and privacy

2) formulate learning algorithms that can use these
aggregates or summaries to train predictive models
that are effective at individual level predictions

This is a tall task, but we show that both these
objectives can be achieved in several cases. To illustrate
our ideas, consider the case of Gaussian regression where
covariates X are related to targets y via a linear parameter
θ as y = Xθ+ ϵ, ϵ ∼ N (0, σ2) It is well known that the
MLE parameter θMLE can be obtained in closed form
from the data as

θMLE = (X⊤X)−1X⊤y

Clearly, we do not require the entire dataset – the only
relevant quantities that are required for learning the model
are aggregates X⊤X and X⊤y.

Therefore, if we store only these aggregates, and delete
the individual datapoints themselves, we can still recover
the MLE parameter error-free without access to the raw
dataset. For the Gaussian case, therefore, we have an
exact solution. We can use this as a basic modus operandi
for other setups as well. Our specific contributions are
summarised below:

1) We design novel aggregation paradigms and learning
algorithms that guarantee privacy while still allowing
learning for a wide variety of models.

2) We provide a theoretical analysis as well as empirical
evaluation for our methods with experiments on data
from telecommunication and healthcare

We call our framework SlAgg, or Slice and Aggregate,
after the main steps involved in the procedure. While
keeping the overall approach fairly simple and intuitive,
we prove strong guarantees on its performance, and also
show very favorable empirical results.

II. Problem Definition
In this work, we consider predictive models that are

trained via supervised learning. Let X = [x1,x2, · · ·xN ] ∈
RN×d be a set of N data points in a d-dimensional
feature space, and let y = [y1, y2, · · · yN ] ∈ YN ⊆ RN

be their corresponding targets. We assume that their
exists a function ƒ such that for each (x, y) pair, we have
y = ƒ(x) + η, where η is random noise.

The standard machine learning setup estimates this
function ƒ using a training set of the form D = (X,y) ≡



{(xi, yi) : i = 1, 2, · · · } and a learning protocol that
consists of solving the following optimisation problem

ƒ∗ = argmin
ƒ∈F

∑
(x,y)∈D

L(ƒ(x), y) (1)

where L : Y ×Y 7→ R+ is a loss function that measures
the discrepancy between predicted ƒ(x) and measured y
(e.g., negative log-likelihood).

In our setup, the full dataset is not available for training.
Instead, the data is divided into M disjoint “chunks” or
subsets as DT = {(xi, yi) : i ∈ IT }, where IT ⊂ [N ]
are partitions of the index set, and T = 1, 2, · · ·M . For
example, DT may be customer data or patient records
for the T th month, which need to be compiled into non-
identifiable aggregates and the individual data points are
to be deleted at the beginning of the (T +1)th month for
privacy reasons.

Therefore, instead of the full dataset D, the learner is
only allowed access to each chunk, one at a time, for a brief
period of time. The learner’s task is to use these chunks
to learn a non-identifiable aggregates before the individual
data points in each chunk are deleted. Finally, the learner
will be required to devise a training algorithm for the final
predictive model that only use these aggregates.

III. Aggregation Design Paradigms
The question now is how to use these chunks to learn

an effective estimate of the function ƒ. For this, we take
inspiration from the concept of “sufficient statistics” in
estimation theory that studies various methods to estimate
a parameter for a distribution given data. Let θ be a
parameter to be estimated from a given dataset D. A
sufficient statistic for θ is a quantity (or a set of quantities)
S computed from the dataset D such that the posterior of
the parameter given the statistic is independent of the
individual datapoints themselves, that is, P (θ|S,D) =
P (θ|S). Basically, a sufficient statistic summarises the
dataset by extracting from the individual datapoints all
the information that is necessary for parameter estimation,
and discards the rest.

Our task here is similar – given a data chunk, extract
the useful information from the data chunk in the form of
aggregates that can be subsequently used for training a
final predictive model. We now discuss specific instantia-
tions of both an aggregation paradigm as well as a learning
algorithm that only uses these aggregates. We have already
seen this idea in action for the case of Gaussian linear
regression. In the rest of the manuscript, we extend these
methods to the case of binary classification and generalised
linear models.

A. Binary Classifiers
Unlike the Gaussian case, there is no nice closed form

solution for most binary classification models. In fact, the
model parameter itself may not always be unique and
suffer from identifiability issues owing to rotational or
scale invariance. Therefore, we study the case of binary

classification not in formal model specification terms, but
by treating a classifier as a black box with a specific
probability of error over the population.

In particular, consider the case where one has access to
multiple noisy classifiers. One can consider the output of
each of these classifiers as noisy estimates for the “true”
class label (defined as the mode of P (y|x)), and by taking
the majority vote, one can estimate the true class label
with high accuracy. Therefore, if we can “aggregate” each
data chunk to learn a black box noisy binary classifier, we
no longer need individual training datapoints themselves
to get the final predictive model.

Hence, our protocol is the following:
1) For each data chunk DT , learn a classifier ƒT : X 7→

{0, 1} from only the data points in DT

2) Given a new random sample x, and the classifiers
{ƒT : T = 1, 2, · · ·M}, obtain the corresponding
predictions {ŷT = ƒT (x) : T = 1, 2, ·M}

3) Obtain the final estimate for the class label as

ƒ̂(x) = median{yT : T = 1, 2, · · ·M} (2)

We now analyse the predictive accuracy of our final
classifier. To account for unavoidable noise and limitations
of model class, we compare the performance of our method
to the best possible model from the function class that can
be learned from the individual non-aggregated data points.
Let λ be the probability of mis-classification on a randomly
selected data point for the best possible model ƒ∗ from
the function class. For any x, let zT (x, y) = I{ƒT (x) ̸= y}
where I is the indicator function. Note that since each data
chunk DT consists of i.i.d samples of the same size, zT are
independent and identically distributed random variables
over the joint probability space for the data. Let p = E[zT ]
be an upper bound on the mis-classification probability for
the T th classifier, with the expectation taken over the joint
distribution of (x, y). We then have the following result:

Proposition III.1. Let p < 0.5 and ƒ̂ be our final classifier
from M data chunks as defined in equation (2). Then,
the probability that ƒ̂ does worse than ƒ∗ on any given
datapoint is upper bounded by the quantity:

1− p

(1− λ)(1− 2p)
[(1− p)p exp (2κ− ξM + ζM ))]

M/2

where κ ≈ 0.693, ξM ∼ O( logMM ), and ζM ∼ O( 1
M2 )

It is easy to see that as M increases, the probability
of error rapidly decreases. Note that one corollary of
this result is that a learner that uses data chunks can
potentially learn better than a single learner that uses
the full non-aggregated dataset. Indeed, this is exactly
what happens with our experiments on real data as we
show in section (IV).

Multi-Class Case: Our analysis extends to the multi-
class case by treating it as multiple 2-class classification,



and then using union bound to get an upper bound on
error. A similar result holds as above, with an additional
multiplicative cost factor, which can be tuned up to certain
trade-offs.

B. GLMs and Exponential Family Distributions
We now extend our techniques to GLMs [1] which are

generalizations of linear regression that subsume various
models like Poisson regression, logistic regression, etc. as
special cases. A GLM is usually parametrized by a convex
function ϕ (usually known[1]) and a parameter θ (to be
learned from data). Given a predictor x and a parameter
θ, a GLM generates the target y from a linear function of
the predictor x⊤θ using a monotonic link function gϕ(·)
using a probability distribution Pϕ from the exponential
family. Specifically, we have

Pϕ(y|x,θ) ∝ exp
(
yx⊤θ −Gϕ(x

⊤θ)
)

(3)

where Gϕ is such that gϕ ≡ ∇Gϕ. The specific Pϕ

depends on the GLM used (e.g. Poisson for Poisson
regression, Bernoulli for logistic regression, etc.).

Unbiased Estimators Generally speaking, learning the
MLE parameter θ∗ for a GLM from anything other than
individual data points can be difficult. However, if we
have access to unbiased estimates of θ∗, we can still
approximate the model parameter by averaging. Let P
be an unbiased estimator that takes any dataset D and
outputs an estimate for the parameter P(D) such that
∀D, ED[P(D)] = θ∗, the optimal model parameter. We
partition the data into chunks DT , define θ̂T = P(DT )
as result of the estimator applied to the data chunk. We
define our final parameter estimate as θ̂ = 1

M

∑M
T=1 θ̂T It

is easy to see that if M is high enough, then with high
probability, θ̂ → θ∗, even if the individual θ̂T be of low
quality.

Setting the gradient of the log likelihood with respect to
θ to zero gives Xgϕ(X

⊤θ) = Xy where gϕ(·) is applied
elementwise. Clearly, this does not have a closed form
solution except when X,X⊤ are both invertible. Suppose
we divided up D in chunks of d data samples each, where
d is the dimensionality of the data. Then for each T , we
can obtain a parameter θ̂T that is locally optimal for the
samples corresponding to the data chunk DT .

Therefore, our learning protocol can be summarised as
follows –

1) For each data chunk DT , compute a locally optimal
parameter as

θ̂T = (XTX
⊤
T )

−1XTg
−1
ϕ (yT )

2) Using the individual θ̂T for each data chunk DT ,
compute the final estimate for the global GLM
parameter as

θ̂ =
1

M

M∑
T=1

θ̂T

Here, g−1
ϕ is defined element-wise. In case y is outside

the domain of g−1
ϕ , one can use any projection of y to

the interior o the domain of g−1
ϕ instead. We have the

following result:

Proposition III.2. If g−1
ϕ (equivalently gϕ) is a linear

function, θ̂ is an unbiased estimator of θ∗

The link function is effectively linear for many expo-
nential family distributions, like Gaussian, Exponential,
Pareto, Chi-Squared, etc., but one can use sampling-based
approximations to estimate θ∗ for other GLMs.

IV. Experiments
We demonstrate the efficacy of our methods with

empirical evaluation on three real datasets from the
healthcare and telecom domains where our problem setup
is particularly relevant. Since this is a first work, we do
not know of any alternative algortihmic competitors for
our methods. Hence, in each case, we compare against a
performance “upper-bound” that is obtained from learning
from the full non-aggregated dataset with individual level
samples. We also compare against SGD and an ecological
regression (EcoReg) baseline [11] that treats averages as
individual level samples for training. We show plots of
test error versus number of learners/data chunks seen by
our method, as well as a final table of results. SGD and
EcoReg are included only in the table and omitted from
plots for clarity, since their performance is rather poor in
comparison.

Binary Classification: Churn in Telecom:
We use two datasets from the Telecom industry for

our binary classification tasks one from IBM Watson
Analytics, and the other from Kaggle. In both cases, the
objective is to predict churn [8] from customer account
and usage details, which refers to the event where a
customer terminates a service or contract with a particular
company. We use a logistic regression model as our base
modelling framework, and use available information like
demographic or service details as features (see [9, 10] for
more details. For both datasets, our algorithm needs only
a few data chunks to achieve a performance better than
learner with non-aggregated dataset, and significantly
outperforms SGD and EcoReg (Fig (1)).

Real-valued data: Healthcare
We now apply our methods on a healthcare dataset

where the objective is to estimate Medicare charges from
the CMS Beneficiary Summary DE-SynPUF dataset [5]
with available predictor variables that include age, race,
sex, duration of coverage, presence of a variety of chronic
conditions, etc. This application is motivated by patient
privacy considerations that limit access to healthcare
records.The data is collected into chunks and fed into
each algorithm to learn a Poisson regression model. The
results (Fig (1) and Table (IV)) show that our techniques



(a) Test Error on IBM (churn) dataset (b) Test Error on Kaggle (churn) dataset (c) Test Error on DESynPUF
Fig. 1: Test error vs Number of Data Chunks on IBM, Kaggle and DESynPUF datasets
Note 1: Our algorithm does better than a binary classifier trained with non-aggregated data, exactly as predicted by Prop (III.1).

No. of Non-Aggregated This Work SGD EcoReg

Chunks Train Test Train Test Train Test Train Test

IBM 29 0.1967 0.197 0.1947 0.196 0.285 0.287 0.356 0.357
Kaggle 30 0.142 0.142 0.142 0.143 0.245 0.245 0.216 0.218
DESynPUF 14 0.125 0.130 0.153 0.159 1.785 1.797 0.22 0.23

TABLE I: Final Training and Test Error on all three datasets for learner with non-aggregate data, our method with all chunks used, SGD
and naive averaging. Our method outperforms baseline and has performance very close to learner with full, non-aggregated dataset. Note:
We use logistic regression as base model for churn datasets, and Poisson regression for DE-SynPUF

with only a few data chunks can perform very close to a
learner with access to the full dataset.

V. Conclusion

In this manuscript we tackle the problem of learning
in the scenario when privacy, scalability, security, etc.
concerns limit access to training data only in the form
of chunks that need to be aggregated and deleted after
a specific duration of time. We design aggregation tech-
niques, as well as algorithms to learn models from these
aggregates that can nevertheless make effective predictions
at the individual level. We motivate our techniques by
using Gaussian regression, and subsequently extend them
to the case of binary classification and GLMs. We provide
both theoretical results as well as empirical evaluation for
our work.
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