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Abstract—In this paper, we consider the inverse graph filtering
process when the original filter is a polynomial of some graph
shift on a simple connected graph. The Chebyshev polynomial
approximation of high order has been widely used to approximate
the inverse filter. In this paper, we propose an iterative Chebyshev
polynomial approximation (ICPA) algorithm to implement the
inverse filtering procedure, which is feasible to eliminate the
restoration error even using Chebyshev polynomial approxima-
tion of lower order. We also provide a detailed convergence
analysis for the ICPA algorithm and a distributed implementation
of the ICPA algorithm on a spatially distributed network.
Numerical results are included to demonstrate the satisfactory
performance of the ICPA algorithm in graph signal denoising.
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I. Introduction
Spatial distributed networks (SDNs) have been widely used

in (wireless) sensor networks [1], smart power grids [2], drone
fleets and multirobot networks, and many real world applica-
tions. An SDN has large amount of agents spatially deployed,
with each of them having some data processing capability and
exchanging data only with its adjacent neighbors owing to its
limited communication capacity and/or privacy concern. Due
to its irregular structure, topology of an SDN is often described
by a graph G := (V,E), where a vertex i ∈ V represents an
agent in the SDN and an edge (i, j) ∈ E means that data
collected/stored at the agent j ∈ V can be sent/shared to the
agent i ∈ V via some direct communication link [3], [4].

Data collected on an SDN are often modeled by a graph
signal x = (x(i))i∈V indexed by vertices i ∈ V [3], [4].
Borrowed from classical signal processing, some basic build-
ing blocks have been introduced for graph signal processing
[4]–[5]. One of fundamental concepts is graph filtering which
maps a graph signal x linearly to another graph signal

b = Hx, (I.1)

where the graph filter H can be represented by a matrix H =
(H(i, j))i,j∈V indexed by vertices in G. The graph filters have
been widely used in signal denoising, inpainting, smoothing,
reconstructing and semi-supervised learning [4], [6], [7], [5].

In this paper, we consider graph filters H being polynomials
of a graph shift S,

H = h(S) = h0I +

L∑
j=1

hlS
l, (I.2)

where h(t) =
∑L
l=0 hlt

l for some coefficients hl, 0 ≤ l ≤ L,
and a graph shift S = (s(i, j))i,j∈V on a graph G = (V,E)
satisfies

s(i, j) = 0 if (i, j) 6∈ E.

Illustrative examples of graph shifts are the adjacency matrix
AG , the degree matrix DG of the graph G, Laplacian matrix
LG := DG −AG , and normalized Laplacian matrix Lsym

G =

D
−1/2
G LGD

−1/2
G [6], [8], [7], [5].

An SDN does not have a strong central node to govern all
data processing over entire networks, and then signal process-
ing on an SDN should be implemented in a distributed manner,
which involves local data processing and interchanging only.
Many graph signal processing can be naturally implemented
in a distributed manner, such as the graph filtering with filters
being the polynomials of a graph shift [9]. However, not
all procedures can be realized in a distributed manner, for
instance, the inverse filtering to restore a signal x from its
observation in (I.1)

x = H−1b, (I.3)

since H−1 is not usually a polynomial of small degree [10].
To tackle the above problem, the Chebyshev polynomial

approximation has been employed to approximate the inverse
filter H−1, which has been successfully applied in graph
signal processing, including graph wavelet filter bank [7], [5],
denoising, smoothing, and semi-supervised learning on graphs
[10] etc. However, to achieve a reasonable accuracy of the
restoration, the truncated Chebyshev polynomial may have
high order and the graph filter H should have certain regularity
[7], [11], [12].

In this paper, we introduce an iterative Chebyshev polyno-
mial approximation algorithm (II.7) and (II.8), ICPA in short,
for the inverse filtering procedure when the filter H is a poly-
nomial of a graph shift. The proposed ICPA algorithm achieves
any restoration accuracy at the expense of additional iterations,
while the truncated Chebyshev polynomial approximation of
lower degree can be selected.

In this paper, we show that the ICPA algorithm has expo-
nential convergence and it can be implemented in a distributed
manner with each agent exchanging data information with its
adjacent agents only. Numerical simulations on applying ICPA
algorithm to graph denoising with Tikhonov regularization
have been shown to demonstrate its satisfactory performance.

II. ITERATIVE CHEBYSHEV POLYNOMIAL
APPROXIMATION ALGORITHM

In this section, we introduce an iterative algorithm to
implement the inverse filtering procedure (I.3), when the graph
shift S has its spectrum σ(S) contained in an interval [a, b],



and the filter H = h(S) is a polynomial h of the graph shift
S that satisfies

h(t) 6= 0 for all t ∈ [a, b]. (II.1)

Define Chebyshev polynomials Tk, k ≥ 0, iteratively by

Tk(s) =

 1 if k = 0,
s if k = 1,
2sTk−1(s)− Tk−2(s) if k ≥ 2.

(II.2)

By (II.1), we know that 1/h is an analytic function on a
neighborhood of the interval [a, b], and hence it has Fourier
expansion of shifted Chebyshev polynomials,

1

h(t)
=

1

2
c0 +

∞∑
k=1

ckTk

(2t− a− b
b− a

)
, t ∈ [a, b], (II.3)

where

ck =
2

π

∫ π

0

cos kθ

h
(
a+b
2 + b−a

2 cos θ
)dθ, k ≥ 0. (II.4)

Set

gK(t) =
c0
2

+

K∑
k=1

ckTk

(2t− a− b
b− a

)
, K ≥ 0.

By (II.1), the truncated Chebeshev polynomials gK ,K ≥ 0,
approximate the analytic function 1/h uniformly on [a, b],

lim
K→∞

max
t∈[a,b]

|1− h(t)gK(t)| = 0. (II.5)

In this paper, we will select an integer K ≥ 0 such that gK is
a good approximation to 1/h in the sense that

εK := sup
t∈[a,b]

∣∣1− h(t)gK(t)
∣∣ < 1. (II.6)

The existence of such an integer K follows from (II.5) [7].
With the above selection of the truncated Chebeshev poly-

nomial gK , we propose an iterative algorithm to implement
the inverse filtering procedure (I.3):

z(m) = GKb(m−1)

x(m) = x(m−1) + z(m)

b(m) = b(m−1) −Hz(m), m ≥ 1,

(II.7)

with initials
b(0) = b and x(0) = 0, (II.8)

where GK = gK(S). We call the above algorithm by iterative
Chebyshev polynomial approximation algorithm and ICPA for
abbreviation.

In the following theorem, we show that the proposed ICPA
algorithm (II.7) and (II.8) converges exponentially to the
output of the inverse filtering procedure (I.3).

Theorem II.1. Let b be a graph signal, S be a symmetric
graph shift with its spectrum σ(S) ⊂ [a, b], and H = h(S)
for some polynomial h satisfying (II.1). Take a Chebyshev
polynomial approximation gK to the function h−1 on [a, b]

such that (II.6) holds. Then x(m),m ≥ 0, in the ICPA
algorithm (II.7) and (II.8) converges exponentially to H−1b,

‖x(m) −H−1b‖2 ≤
(

inf
t∈[a,b]

|h(t)|
)−1

εmK‖b‖2, m ≥ 0,

(II.9)
where εK is given in (II.6).

Proof: Set r(t) = 1− h(t)gK(t). Then

r(S) = I−HGK (II.10)

and
σ
(
r(S)

)
=
{
r(z), z ∈ σ(S)

}
. (II.11)

By (II.7) and (II.8), we can prove by induction on m ≥ 0 that

b(m) = (r(S))mb (II.12)

and
H−1b− x(m) = H−1b(m), m ≥ 0. (II.13)

Recalling that the graph shift S is symmetric and applying
(II.6) and (II.10)–(II.12), we obtain

‖b(m)‖2 ≤ εmK‖b‖2, m ≥ 0.

This together with (II.13) and the symmetry of the graph shift
S proves (II.9).

III. DISTRIBUTED IMPLEMENTATION OF ICPA
ALGORITHM

In this section, we consider distributed implementation of
the ICPA algorithm (II.7) and (II.8) on a simple connected
graph G := (V,E) [3], [13]. Here a graph G is simple if it is
undirected and unweighted, and it does not contain self-loops
and multiple edges.

Definition III.1. The bandwidth $ := $(A) of a graph filter
A = (a(i, j))i,j∈V is the minimal nonnegative integer such
that a(i, j) = 0 for all i, j ∈ V with ρ(i, j) > $, where the
geodesic distance ρ(i, j) between vertices i, j ∈ V is defined
by the number of edges in a shortest path connecting them.

A graph shift S has bandwidth one and a polynomial filter
H = h(S) of a graph shift S has bandwidth

$(H) ≤ L,
where L is the degree of the polynomial h. For a graph filter
A = (a(i, j))i,j∈V with bandwidth $ := $(A), locations of
all nonzero entries a(i, j) 6= 0 in the i-th row are in the $-
hop neighbor of the agent i, which implies that the number of
nonzero entries at each row of the graph filter is bounded by
((∆(G))$+1 − 1)/((∆(G))− 1), where ∆(G) is the maximal
degree of the graph G [3].

As filters GK and H in (II.7) have bandwidths K and L
respectively, the centralized implementation of the ICPA algo-
rithm (II.7) and (II.8) needs to perform O((∆(G))max(L,K)n)
multiplications and additions in each iteration, where n is the
order of the graph G. By Theorem II.1, the ICPA algorithm
(II.7) and (II.8) will reach the approximation accuracy ε after
O(ln(‖b‖2/ε)) iterations. Therefore the computational cost to



implement the ICPA algorithm (II.7) and (II.8) in a centralized
facility is about O

(
(∆(G))max(L,K) ln(‖b‖2/ε)n

)
.

The ICPA algorithm (II.7) and (II.8) can be implemented
in a distributed manner with each agent exchanging data
information with its adjacent agents only. By the recurrence
relation (II.2) for Chebyshev polynomials, the first step z(m) =
GK(S)b(m−1) in the ICPA algorithm (II.7) and (II.8) can be
implemented in a distributed manner as follows, see Figure 1
for the block diagram:

u0 = b(m−1)

u1 = S̃u0, z̃1 = c0
2 u0 + c1u1

ul = 2S̃ul−1 − ul−2, z̃l = z̃l−1 + clul, 2 ≤ l ≤ K,
(III.1)

with the output z(m) = z̃K , where

S̃ =
2

b− a
S− a+ b

b− a
I,

and S are graph shifts on the graph G. Similarly, the filtering
procedure Hz(m) in the third step of the ICPA algorithm (II.7)
and (II.8) can also be implemented in a distributed manner:

w0 = hLz
(m) and wl = hL−lz

(m) + Swl−1, 1 ≤ l ≤ L,
(III.2)

where wL = Hz(m) is the output signal of the filtering
procedure, see Figure 2 for the block diagram. In each iteration

Fig. 2: Block diagram to implement Hz(m).

of the above implementation for the ICPA algorithm (II.7) and
(II.8), each agent k ∈ V in an SDN only needs to exchange
data information with its adjacent agents and to perform at
most 2 deg(k)+3 ≤ 2∆(G)+3 multiplications and additions,
where deg(k) is the degree of the vertex k in the graph G.

Presented below is the pseudo code for the ICPA algorithm
(II.7) and (II.8) for every agent k ∈ V in an SDN.

IV. GRAPH SIGNAL DENOISING

In this section, we apply the proposed ICPA algorithm
(II.7) and (II.8) to the graph signal denoising with Tikhonov
regularization.

In our setting on graph signal denoising, the observation is
of the form b = xo + η, where xo is the original graph signal
and η is the bounded additive noise. The original signal xo
is usually restored approximately through some optimization
approaches which involve data fidelity terms and/or penalty
terms. In this paper, we consider the graph signal denoising
with Tikhonov regularization

min ‖x− b‖22 + αxTLsym
G x, (IV.1)

Algorithm III.1 Implementation of the ICPA Algorithm on
an agent k ∈ V

Inputs: stop criterion ε, Chebyshev polynomial coefficients
cl, l = 0, · · · ,K and polynomial coefficients hl, l =
0, · · · , L of the polynomial filter H = h(S), the observation
bk = (b(i))i∈Nk∪k around the agent k, the k-th row
Sk = (S(k, i))i∈Nk∪k and S̃k = (S̃(k, i))i∈Nk∪k of the
shift matrices S and S̃.
Initialization: x(0)(k) = 0,b

(0)
k = bk and m = 1.

Iteration:
1a) Set u(m)

0,k = b
(m−1)
k and compute u(m)

1,k = 〈S̃k,u(m)
0,k 〉.

1b) Send u(m)
1,k to neighbors i ∈ Nk and receive u(m)

1,i from
neighbors, then form vector u(m)

1,k = (u
(m)
1,i )i∈Nk∪k.

1c) Calculate z̃(m)
1 (k) = 1

2c0u
(m)
0,k (k) + c1u

(m)
1,k (k).

1d) for l = 2, · · · ,K do
- Compute u(m)

l,k = 2〈S̃k,u(m)
l−1,k〉 − u

(m)
l−2,k.

- Send u(m)
l,k to neighbors i ∈ Nk and receive u(m)

l,i from
neighbors, then form vector u(m)

l,k = (u
(m)
l,i )i∈Nk∪k.

- Calculate z̃(m)
l (k) = z̃

(m)
l−1 (k) + clu

(m)
l,k (k).

end for
1e) Set z(m)(k) = z̃

(m)
K (k).

2) Update x(m)(k) = x(m−1)(k) + z(m)(k).
3a) Calculate w(m)

0 (k) = hLz
(m)(k).

3b) Send w
(m)
0 (k) to neighbors i ∈ Nk and receive

w
(m)
0 (i) from neighbors, then form vector w

(m)
0,k =

(w
(m)
0 (i))i∈Nk∪k.

3c) for l = 1, · · · , L do
- Compute w(m)

l (k) = hL−lz
(m)(k) + 〈Sk,w(m)

l−1,k〉.
- Send w

(m)
l (k) to neighbors i ∈ Nk and receive

w
(m)
l (i) from neighbors, then form vector w

(m)
l,k =

(w
(m)
l (i))i∈Nk∪k.

end for
3d) Update b(m)(k) = b(m−1)(k)− w(m)

L (k).
4) Send b(m)(k) to neighbors i ∈ Nk and receive b(m)(i)

from neighbors, then form vector b(m)
k = (b(m)(i))i∈Nk∪k.

5) Evaluate |z(m)(k)| ≤ ε. If yes, terminate the iteration
and output x(m)(k) and m. Otherwise, set m = m+ 1 and
start another iteration.
Outputs: x(m)(k) and m.

where α is a weighted factor and Lsym
G is the normalized

Laplacian on the graph G whose spectrum is contained in [0, 2]
[10]. The solution to the above minimization problem is

x = H−1b, (IV.2)
where H := I + αLsym

G is a polynomial of the graph shift
Lsym
G [5], [9], [10].
In our simulations below, the original signal xo is a piece-

wise constant function with vaules −1 and 1 [5] residing on
the Minnesota traffic graph, which has 2642 vertices 3303
edges, see Figure 3. The available data b = xo + η is noisy
observation of the original graph signal xo, where η is the



Fig. 1: Block diagram to implement GKb(m−1).

additive bounded noise randomly distributed in [−ς, ς].

Fig. 3: Plotted on the left is the Minnesota traffic graph, and
on the right is the graph signal xo on the Minnesota traffic
graph.

For the implementation of the ICPA algorithm (II.7) and
(II.8) in a distributed manner, we need some information on
the filter H and the truncated Chebyshev polynomial approx-
imation gK sent to every agent of the graph, particularly, the
weighted factor α in the filter H and polynomial coefficients
of the truncated Chebyshev polynomial approximation gK . A
toolbox to find the truncated Chebyshev polynomial approx-
imation of order K has been developed in [7]. For instance,
applying sgwt cheby coeff in sgwttoolbox, we obtain the first
few Chebyshev polynomial approximation gK ,K = 1, 2, 3
when α = 2,

g1(t) =
3

7
− 2

7
t

g2(t) =
1

3
− 1

3
t+

2

9
t2

g3(t) =
15− 10t+ 12t2 − 8t3

47
.

An alternative to the polynomial design of the graph filter
in (I.2), the infinite impulse response (IIR) graph filters, such
as the autoregressive moving average (ARMA) graph filters,
are characterized by a rational graph frequency response [14],
[15]. We remark that our ICPA algorithm (II.7)–(II.8) with
the Chebyshev approximation GK of the inverse filter H−1

being replaced by γH and γI becomes the Iterative Distributed
IIR and Fast Iterative Distributed IIR respetively, where γ is
the step length chosen appropriately. Also the ICPA algorithm
(II.7)-(II.8) with m = 1 is equivalent to the CPA in [10]. In
the extended version of this proceeding paper, we will provide
more detailed comparison with other distributed filtering on
graphs, cf. [10], [14], [15].

Our simulations on graph signal denosing through Tikhonov
regularization (IV.1) have been carried out on Matlab platform
equipped on a PC with i7-7700 CPU (3.6Hz) and 8GB
memory, where the weighted factors α are [2, 10, 40, 100]

TABLE I: Denoising performance measured by the average
SNR over 50 tests.

Noise Level ε 1/4 1/2 1 2

Input SNR 16.82 10.79 4.79 −1.26

CPA SNR 16.55 12.05 5.41 2.53

ICPA SNR 16.56 13.42 11.07 9.38

TABLE II: Performance comparison of the ICPA and CPA
with different approximation order K over 50 tests, measured
by average SNR.

K 1 2 5 10

Input SNR 10.80 10.79 10.79 10.78

CPA SNR 2.93 5.65 12.03 13.41

ICPA SNR 13.43 13.42 13.42 13.43

ICPA Iterations m 25 14 6 4

and the noise level ς are [1/4, 1/2, 1, 2]. Different weighted
factors are used for different noise levels. Shown in Table
I are the comparison between the Chebyshev polynomial
approximation (CPA) algorithm [10] and the proposed iterative
Chebyshev polynomial approximation (ICPA) algorithm (II.7)
and (II.8). In all simulations for signal denoising, we use
20 log10 ‖xo‖2/‖b − xo‖2 to measure the input `2-signal-to-
noise ratio (`2-SNR) in dB, and 20 log10 ‖xo‖2/‖x − xo‖2
to measure the output `2-SNR in dB. We observed that
the proposed ICPA outperforms CPA in [10] with the same
approximation order K = 5.

Shown in Table II are the comparison between the CPA [10]
and the proposed ICPA with different polynomial orders K
where the weighted factor α = 10 and noise level ς = 1/2. It
is observed that the CPA algorithm provides worse approxima-
tions when the approximation order K ≤ 10, while the ICPA
algorithm always achieves almost the same approximation
accuracy at the expense of additional iterations. This suggests
that for the implementation of the CPA algorithm on inverse
filtering procedure, one may require to select the truncated
Chebyshev polynomial gK with large order K, while the
proposed ICPA algorithm works well as long as the truncated
Chebyshev polynomial gK provides a good approximation to
1/h, i.e. (II.6) holds.

V. CONCLUSIONS

In this paper, an iterative Chebyshev polynomial approx-
imation (ICPA) algorithm has been proposed to implement
the inverse filtering procedure when the filter is a polynomial
of a graph shift. The proposed ICPA has the exponential
convergence and linear computational complexity, and more
importantly it can be fulfilled in a distributed manner with



each agent exchanging data information with its adjacent
agents only. The proposed algorithm is amenable to distributed
processing of signals on sparse graphs of large orders.
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