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Abstract—The emerging field of graph signal processing aims
to develop analysis and processing techniques for data that is best
represented on irregular domains such as graphs. To this end,
important notions of classical signal processing, such as smooth-
ness, band-limitedness, and sampling, should be extended to the
case of graph signals. One of the most fundamental concepts
in classical signal processing is the Fourier transform. Recently,
graph Fourier transform was defined as a generalization of the
Fourier transform on Abelian groups, and many of its properties
were investigated. However, a graph is usually the manifestation
of a non-commutative structure; this can be easily seen in the
case of the Cayley graph of a non-Abelian group. In this article,
we investigate a new approach to develop concepts of Fourier
analysis for graphs. Our point of view is inspired by the theory
of non-commutative harmonic analysis, and is founded upon the
representation theory of non-Abelian groups.

I. INTRODUCTION

Given the increasing amount of data being recorded as
signals which are naturally represented on graph structures,
the new field of graph signal processing has attracted the
attention of many researchers in the past few years. For a fixed
graph G, a graph signal on G is a complex-valued function
f : V → C on the vertex set V of G. If the set V is given
a fixed ordering, say {vi}Ni=1, then the graph signal can be
represented as a column vector

(
f(v1), f(v2), · · · , f(vN )

)T
in CN . A major goal of graph signal processing is to analyze
such signals not only as vectors in RN or CN , but to take the
underlying structure of the graph G into account. As a first
step, we design orthonormal bases for CN inspired from the
graph G itself. Such an orthonormal basis can be designed as
a set of eigenvectors for the graph adjacency matrix or the
graph Laplacian. The adjacency matrix of G is a 0/1-valued
matrix AG of size N , whose (i, j)-th entry is 1 precisely when
the vertices vi and vj are adjacent. The Laplacian of G is an
N×N matrix, denoted by LG and defined as LG = DG−AG,
where DG is the diagonal matrix with dii equal to the degree
of the vertex vi for every i ∈ {1, . . . , N}.

Consider either of the matrices AG or LG, and fix an or-
thonormal basis of eigenvectors φ1, . . . , φN ∈ RN associated
with (possibly repeated) eigenvalues λ1, . . . , λN ∈ R for that
matrix. The graph Fourier transform f̂ of a graph signal

f : V → C is defined to be the expansion of f in terms
of the orthonormal basis {φi}Ni=1. More precisely, we define

f̂(φi) = 〈f, φi〉 =
N∑
n=1

f(vn)φi(vn). (I.1)

The corresponding inverse Fourier transform is given by

f(vn) =

N∑
i=1

f̂(φi)φi(vn), (I.2)

where 〈·, ·〉 denotes the inner product in CN . See [4], [5], [6]
for detailed background on graph Fourier transform, and [3]
for a general overview of graph signal processing.

The above definition of the graph Fourier transform is a
direct generalization of the classical Fourier transform for
vectors in CN . Every such vector can be identified with a
complex-valued function on ZN . The space ZN encodes a
finite set of N elements, which admits a group structure as
well (addition modulo N ). To put the discussion in a harmonic
analytic perspective, we think of ZN as a compact group. As
it is customary for compact groups, we equip ZN with the
normalized counting measure µ, i.e. µ(E) = |E|

N for every
subset E of ZN with |E| distinct elements. The dual of the
group ZN , which is denoted by ẐN , is the group of characters
χk with k ∈ {0, . . . , N − 1}, where each χk : ZN → T is
defined by

χk(m) = e
2πikm
N , for m ∈ ZN = {0, 1, . . . , N − 1}.

Clearly,
{
χk : k = 0, . . . , N − 1

}
forms an orthonormal basis

of `2(ZN , µ). The classical Fourier transform of a signal f :
ZN → C at n ∈ ZN is defined by

f̂(n) = 〈f, χn〉`2(ZN ) =
1

N

N−1∑
m=0

f(m)χn(m). (I.3)

The inverse Fourier transform can be written in a similar
manner, once an appropriate translation-invariant measure is
fixed for ẐN . Guided by the theory of commutative harmonic
analysis, we think of ẐN as a discrete group (as it is the dual



of a compact group), and we equip it with the usual counting
measure. The inverse Fourier transform then becomes

f(m) =

N−1∑
n=0

f̂(n)χn(m), for m ∈ ZN . (I.4)

We refer the reader to [9] for an introduction to Fourier
analysis on Abelian groups.

Let θN = e
2πi
N denote the first N -th root of unity. We

naturally identify the function χk on ZN with the column

vector
(
θkN , θ

2k
N , · · · , θ

(N−1)k
N

)T
in CN , which we again

denote by χk. The set of vectors
{

1√
N
χk : k = 0, . . . , N−1

}
forms an orthonormal basis for CN . Applying formulas similar
to (I.1) and (I.2), we obtain the graph Fourier transform from
the classical formulas (I.3) and (I.4). We remark that the two
transforms differ only in multiplicative factors, which arise
from the different normalizations.

A natural question regarding graph Fourier transform is to
what extent it resembles the actual group Fourier transform
when the underlying graph is Cayley. We initiate a systematic
study of this question. As a first step, we use representations
of the group to construct suitable eigenbases for developing
the Fourier transform of a Cayley graph (see Theorem III.1).
Using these eigenbases simplifies several operations on graph
signals including the graph translation operator, as we show in
Theorem III.2. We conclude the paper by constructing a family
of tight frames in Theorem III.5. Our frame construction is
based on the results of Theorems III.1 and III.2.

II. PRELIMINARIES

Throughout this section, we let G be a finite (not necessarily
Abelian) group of size N . A (unitary) representation of G of
dimension d is a group homomorphism π : G → Ud(C),
where Ud(C) is the (multiplicative) group of d × d unitary
matrices. For a given representation π as above, a subspace
W of Cd is called π-invariant if π(g)ξ ∈ W for all g ∈ G
and all ξ ∈W . A representation π is called irreducible if {0}
and Cd are its only π-invariant subspaces. Two representations
π and σ of G are called (unitarily) equivalent, if there exists
a unitary matrix U such that U−1π(g)U = σ(g) for all g ∈
G. We let Ĝ denote the collection of all (equivalence classes
of) irreducible unitary representations of G. In the case of
an Abelian group, every irreducible representation of G is 1-
dimensional [2, Corollary 3.6], and Ĝ reduces to the group of
characters on G.

Let G = {g1, . . . , gN} be a finite group. An important
representation of G is the right regular representation ρ : G→
UN (C), where ρ(g) denotes the matrix associated with the
permutation h 7→ hg, h ∈ G. The representation ρ is not
irreducible. Indeed, fix an irreducible representation π ∈ Ĝ of
dimension dπ and vectors ξ, η ∈ Cdπ , and define the vector

πξ,η =
(
〈π(g1)ξ, η〉, . . . , 〈π(gN )ξ, η〉

)T
∈ CN .

Vectors (or functions) of the form πξ,η are called coefficient
functions associated with π, and play a significant role in

harmonic analysis of non-Abelian groups. For every η ∈ Cdπ ,
the set Wη =

{
πξ,η : ξ ∈ Cdπ

}
forms a ρ-invariant

subspace of CN . This fact is formalized in the well-known
Peter–Weyl theorem, stating that ρ can be decomposed into
a direct sum of irreducible representations. Moreover, every
irreducible representation π ∈ Ĝ occurs dπ many times in ρ,
where dπ is the dimension of the representation π. We refer
the reader to [2] for a detailed account of the representation
theory of compact groups. We remark that everything we have
mentioned so far in this section can be discussed in the context
of general compact groups; however, for the purposes of this
article, we limit ourselves to finite groups.

Let G be a finite group, and S ⊆ G be a generating set for
G. Assume in addition that S is inverse-closed, i.e., x−1 ∈ S
for all x ∈ S. The Cayley graph Γ(G;S) is the graph with
vertex set G in which a pair of vertices x and y are adjacent
if and only if x−1y ∈ S. Note that the assumption of S being
inverse-closed guarantees that the Cayley graph is undirected.
Observe that the neighborhood of a vertex x in Γ(G;S) is
given by

xS := {xs : s ∈ S}.

As a result, the adjacency matrix A of the Cayley graph
Γ(G;S) is given by

A =
∑
s∈S

ρ(s),

where ρ is the right regular representation of G.

III. GRAPH FOURIER TRANSFORM FOR CAYLEY GRAPHS

Let G be a finite group of size N . Recall that by the Peter–
Weyl theorem, the right regular representation ρ is unitarily
equivalent to

⊕
π∈Ĝ dππ, i.e. there exists a unitary matrix U

so that
ρ(g) = U∗

(⊕
π∈Ĝ

dππ(g)
)
U, ∀g ∈ G.

Now, for π ∈ Ĝ, let {e1, . . . , edπ} be the standard basis of
Cdπ , and define πi,j to be the coefficient function πej ,ei . Under
the application of the unitary map U , we can think of πi,j as
an element of CN (or, equivalently, as an element of `2(G))
whose projection onto every summand of

⊕
π∈Ĝ dπC

dπ , ex-
cept the summand associated with the j-th copy of π, is 0.

The following theorem follows from Theorem 6 in [1],
and suggests a suitable eigenbasis to be used in the Fourier
expansion of a signal defined on a Cayley graph. It was
proven for Cayley graphs as Theorem 1.1 in [8]. We include
a simplified proof to be self-contained and illustrate the
differences of defining Cayley graphs through left, rather than
right, cosets.

Theorem III.1. Let G be a finite group and S be an inverse-
closed generating set in G which can be written as a union of
some conjugacy classes of G. Let A be the adjacency matrix
of the Cayley graph Γ(G;S), and let π and πi,j be as above.
Then

Aπi,j = λππi,j ,



where λπ = 1
dπ

∑
g∈S Tr(π(g)).

Proof. First let 1S be the indicator function of S and recall
that

A =
∑
s∈S

ρ(s) =
∑
g∈G

1S(g)ρ(g).

Define Eπ,i := span{πi,j : 1 ≤ j ≤ dπ}. Then by Peter–Weyl,
Eπ,i is an invariant subspace of ρ such that, for U restricted
to this subspace, U∗π(g)U = ρEπ,i(g) for all g ∈ G, where
ρEπ,i(·) denotes the restriction of the operator ρ(·) to Eπ,i.
Hence,

Aπi,j =
∑
g∈G

1S(g)ρEπ,i(g)πi,j =
∑
g∈G

1S(g)U∗π(g)Uπi,j

=
∑
g∈G

1S(g)U∗π(g)ej =

dπ∑
k=1

∑
g∈G

1S(g)πk,j(g)πi,k

=

 1

dπ

∑
g∈S

χπ(g)

πi,j ,
where the final equality follows from Schur’s lemma ([2],
Theorem 3.5) and the fact that 1S is a class function when S
is the union of conjugacy classes. Here χπ(g) is the trace of
the matrix π(g).

The above eigenbasis is natural to analyze signals defined on
Cayley graphs. It can be used to simplify many complications
arising in signal processing on such graphs, and results in
signal processing that is best compatible with the underlying
structure of the graph. For example, let us examine the graph
translation operator defined in [6] via a convolution with the
Kronecker delta function δm, following the traditional Abelian
definition:

(Tmf)(vn) =
√
N(f ∗ δm)(vn) =

√
N

N−1∑
i=0

f̂(φi)φi(vm)φi(vn),

where {φi}N−1i=0 is the eigenbasis for the graph Fourier trans-
form.

Theorem III.2. Let G be a finite group of size N , and
consider the Cayley graph Γ(G;S), where S =

⋃s
i=1 Ci is a

union of conjugacy classes C1, . . . , Cs in G. Let g be a signal
on Γ(G;S), and suppose that for every π ∈ Ĝ, ĝ(πi,j) := ĝ(π)
attains the same value for all 1 ≤ i, j ≤ dπ . Then the graph
translation operator is given by

(T`g)(vk) =
1√
N

∑
π∈Ĝ

dπ ĝ(π)χπ(`−1k).

Proof. By Theorem III.1, the collection
⋃
π∈Ĝ{πi,j}

dπ
i,j=1

forms an orthogonal basis for CN . To obtain an orthonormal
basis, we normalize these vectors as

√
dπ
|G|πi,j . Applying the

definition of T`g, we obtain:

(T`g)(vk) =

√
N

|G|
∑
π∈Ĝ

∑
j

∑
i

ĝ(πi,j)πi,j(`)πi,j(k),

which simplifies as follows:

(T`g)(vk) =

√
N

|G|
∑
π∈Ĝ

dπ ĝ(π)
∑
j

∑
i

πi,j(`)πi,j(k)

=

√
N

N

∑
π∈Ĝ

dπ ĝ(π)
∑
j

∑
i

πj,i(`
−1)πi,j(k)

=
1√
N

∑
π∈Ĝ

dπ ĝ(π)
∑
j

[π(`−1k)]j,j

=
1√
N

∑
π∈Ĝ

dπ ĝ(π)χπ(`−1k).

We remark that the above proof depends heavily on the
assumption that ĝ depends only on π, i.e., is constant on πi,j
for different values of i, j.

Corollary III.3. Under the assumptions of Theorem III.2,
the translation operator T` is invariant when shifted in both
indices, that is, for all m ∈ G,

(T`g)(vk) = (T`mg)(vkm) = (Tm`g)(vmk).

In particular, choosing m = `−1, we see that

(T`g)(vk) = (Teg)(v`−1k),

where e is the group identity.

Proof. By Theorem III.2, we have

(T`mg)(vkm) =
1√
N

∑
π∈Ĝ

dπ ĝ(π)χπ((`m)−1km)

=
1√
N

∑
π∈Ĝ

dπ ĝ(π)χπ(m−1`−1km)

=
1√
N

∑
π∈Ĝ

dπ ĝ(π)χπ(`−1k)

= (T`g)(vk),

where the last equality follows from the fact that characters
are class functions. The equality (T`g)(vk) = (Tm`g)(vmk) is
proved similarly.

Corollary III.4. Under the assumptions of Theorem III.2, the
translation operator Te is invariant on the conjugacy classes
of G.

Proof. From Corollary III.3, we have

(Teg)(vk) = (T`e`−1g)(v`k`−1) = (Teg)(v`k`−1) ∀` ∈ G.

We can now use the results obtained so far to build many
localized functions from the characters of the underlying
group, although we will demonstrate in future work that not
all localized functions can be constructed in this manner.



Theorem III.5. Let {s1, s2, · · · , sk} be a complete set of rep-
resentatives of the conjugacy classes of a group G. Consider
the Cayley graph Γ(G;S), where S is the union of some
conjugacy classes. Define Kr := d(ve, vsr ), with d being
the graph distance function. For each sr, define g(sr) in the
spectral domain by

ĝ(sr)(πi,j) := ĝ(sr)(π) =
χπ(sr)

dπ
.

Then for each i = 1, 2, · · · , N , and each r = 0, 1, 2, · · · , k,
Tig(sr) is supported on the Kr-ball centered at vertex vi.
Moreover, these functions form a basis for localized functions
whose graph Fourier tranform is constant on each represen-
tation space.

Proof. Let C(h) be the conjugacy class of the element h ∈ G.
Then for g as defined above, we have by theorem III.2

(T`g)(vk) = (Teg)(v`−1) =
1

N
1
2

∑
π∈Ĝ

dπ ĝ(π)χπ(`−1k)

=
1

N
1
2

∑
π∈Ĝ

dπ
χπ(si)

dπ
χπ(`−1k) =

1

N
1
2

∑
π∈Ĝ

χπ(si)χπ(`−1k).

Thinking of the last sum as an inner product in `2(Ĝ), we
conclude that

(T`g)(vk) =

{
0 if `−1k 6∈ C(si)
|G|
|C(si)| if `−1k ∈ C(si)

,

where we used the fact that the columns of character tables
are orthogonal.

Now suppose `, k ∈ G are such that the graph distance
d(e, `−1k) = d(`, k) > Ki = d(e, si). Then as distances are
constant on conjugacy classes by corollary III.3, we obtain
(T`g)(vk) = 0 as `−1k 6∈ C(si).

To see that these functions form a basis, we simply note that
the lifted characters

{
ĝ(sr)

}k
r=1

forms a basis for the subspace
of functions whose Fourier transforms are constant on repre-
sentations, as they are linearly independent and there are |Ĝ|
many of them. For any graph distance Kr then, it is clear from
above that the functions g(si) for which d(e, si) < Kr are all
localized, and those for which d(e, si) ≥ Kr are not. They
thus form a basis for such functions.

We conclude this paper by constructing a family of tight
frames. Recall that the graph signal modulation operator Mk

is given by

(Mkf)(vn) =
√
Nf(vn)φk(vn) (k = 0, 1, · · · , N − 1),

where {φi} is the graph Fourier basis (see [7] for more details
on frames, graph signal processing, and related operators).

Theorem III.6. Consider a Cayley graph Γ(G;S), where S
is some union of conjugacy classes. Let the graph Fourier
basis be the eigenvectors for the graph adjacency matrix
(or the graph Laplacian) formed by normalizing the coeffi-
cient functions of the irreducible unitary representations of
G as in Theorem III.1. Then for window functions ĝ(π) :=

∑
k αk

χπ(gk)
dπ

(with each gk in a distinct conjugacy class) ob-
tained from lifting characters (Theorem III.5), the |G|2 vectors
gg,πi,j := Mπi,j (Tgg) (g ∈ G, π ∈ Ĝ, 1 ≤ i, j ≤ dπ) form
a tight frame for graph signals f on Γ(G;S). Furthermore,
‖Teg‖ =

∑
k
|αk|2
|c(gk)| .

Proof. We have∑
g∈G

∑
π∈Ĝ

dπ∑
i=1

dπ∑
j=1

|〈f, gg,πi,j 〉|2

=
∑
g∈G

∑
π∈Ĝ

dπ∑
i=1

dπ∑
j=1

|〈f,Mπi,jTgg〉|2

=
∑
g∈G

∑
π∈Ĝ

dπ∑
i=1

dπ∑
j=1

|〈f,
√
|G|

√
dπ
|G|

πi,j ◦ (Tgg)〉|2

= |G|
∑
g∈G

∑
π∈Ĝ

dπ∑
i=1

dπ∑
j=1

|〈f ◦ (Tgg),

√
dπ
|G|

πi,j〉|2

= |G|
∑
g∈G
‖ ̂f ◦ (Tgg)‖22 = |G|

∑
g∈G
‖f ◦ (Tgg)‖22

= |G|
∑
g∈G

∑
h∈G

|f ◦ (Tgg)(h)|2

= |G|
∑
h∈G

|f(h)|2‖Teg‖22

= |G|‖Teg‖22‖f‖22,

where ◦ represents Hadamard (entry-wise) multiplication of
the vectors. To finish the proof, it is enough to show that
‖Teg‖22 =

∑
k
|αk|2
|c(gk)| , whose details we skip.
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