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ABSTRACT

We consider the problem of multiclass clustering on dynamic
graphs. At each time instant, the proposed algorithm performs
local updates of the clusters in regions of nodes whose clus-
ter affiliation is uncertain and may change. These local clus-
ter updates are carried out through semi-supervised multiclass
total variation (TV) based clustering. The resulting optimiza-
tion problem is shown to be directly connected to a minimum
cut and thus very well suited to capture local changes in the
cluster structure. We propose an ADMM based algorithm for
solving the TV minimization problem. Its per iteration com-
plexity scales linearly with the number of edges present in
the local areas under change and linearly with the number of
clusters. We demonstrate the usefulness of our approach by
tracking several objects in a video with static background.

1. INTRODUCTION

Graph-based clustering is a powerful tool to identify com-
munities in many real-world networks. Graphs are capable
of capturing network structures in a straightforward manner.
For example, in social networks the users can be represented
as nodes and friendship relations can be modelled via the
edges of a graph. Many networks evolve over time as users
leave/join the network and relations between individual users
may change. In such scenarios, the objects to be clustered are
observed at different moments in time and the aim is to obtain
accurate clustering results at each time instant [1,2]. Cluster-
ing evolving networks raises new challenges and opens new
possibilities. For example, previous clustering results can be
used to reduce the computational complexity required for the
current state [3,4]. Furthermore, a good clustering should
not only fit the current data well, but also not deviate too
much from recent clustering results. This observation mo-
tivated the incorporation of temporal smoothness into cluster-
ing algorithms [5-7]. The clustering algorithm, presented in
this paper, is based on the smoothness assumption that most
nodes preserve their cluster membership between two con-
secutive time instants, cf., the temporal smoothness definition
PCM in [6]. However, in contrast to [6] we do not incorpo-
rate temporal smoothness into our cost function, but rather
update only the cluster labels of nodes with uncertain cluster
affiliation. This leads to a significant reduction of the com-
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plexity of the clustering algorithm. The local cluster updates
are performed by semi-supervised TV based clustering. The
corresponding optimization problem is shown to be closely
related to a minimum cut problem and therefore an excellent
match for tracking local changes in the cluster structure. Fur-
thermore, TV based clustering leads in general to much more
accurate clustering results than algorithms using the Lapla-
cian quadratic form (such as spectral clustering) [8]. Further-
more, as shown in [9] our TV based clustering algorithm can
be extended to signed graphs without additional cost. Signed
graphs can capture besides similarity relations also dissimi-
larity relations like being blocked in a social network. The
inclusion of only a few dissimilarity edges can significantly
improve the clustering performance [9].

2. TV BASED DYNAMICAL CLUSTERING

Problem formulation

Consider a time-varying graph G; = (V, W?), where V =
{1,...,N} is the node set and W' is the weighted adja-
cency matrix at time instant ¢ = 1,...,7. The non-negative
entry ij > 0 captures the amount of similarity between
node ¢ and j. We assume that the graph is undirected, i.e.,
W = W7, At each time instant ¢+ we aim for partitioning
the node set V into K clusters Vi, ..., Vi (Ur_, Vi = V,
Vin V;. = ()) such that nodes are more similar within clusters
than across clusters. We assume that between two consecu-
tive time instances the graph undergoes significant changes
in only a limited area and remains largely unchanged other-
wise. In such scenarios it is sufficient to update the clusters
only locally. As will be seen in Section 2, TV based clus-
tering is directly connected to a minimum cut and therefore
predestined for carrying out those local updates.

Semi-supervised clustering

For most nodes the cluster affiliation is maintained from
the previous time instant to the next. This leads to a semi-
supervised clustering problem, i.e., clustering where groups
of nodes L, C Vi, k = 1,..., K, are known a priori to
belong to cluster V. Most semi-supervised clustering ap-
proaches determine the clusters Vi,...,Vx by solving a
relaxed (and regularized) version of the minimum cut prob-



lem
K

vlr,%l..i,rxl;x Z(Z Z Wi;) s.t.

k=1 i€VyjEV\ Vg

For the case of two clusters we can conveniently express the
cluster affiliation in terms of a label vector x € {1,2}"
with z; = 1 if node ¢ belongs to cluster V; and z; = 2
if node 7 belongs to cluster V,. Let L = D — W with
D = diag{dy,...,dn}, d; = Zj W;j, denote the graph
Laplacian. Widely used relaxations (for the case of two clus-
ters) are to replace the graph cut in (1) with the Laplacian
quadratic form x"Lx = 537, 3" (z; — 2;)> Wi; and the
hard constraints £, C V), with penalization terms of the form
Yok Yicr, (mi—k)? [10-14]. However, a much tighter relax-

ation is obtained by the use of the TV [|x||rv =, > lmi—
xj| W;; instead of the Laplacian quadratic form [8].

TV based semi-supervised clustering

For more than two classes, a label vector x € {1,..., K}V,
together with the above definition of the TV or the Laplacian
quadratic form, is no longer suitable for the approximation
of the minimum cut. The reason for this is that the mag-
nitude of |z; — ;| and (z; — x;)? depends on the cluster
indices the nodes belong to. This problem can be circum-
vented by representing the cluster affiliation by the binary
indicator matrix X € {0,1}"*% with X;; = 1 if node i
belongs to cluster £ and X;; = 0 otherwise. We denote by
x; the rows of X, ie., X = (x7,...,x%)T. The appro-
priate definition of the TV of a matrix X is then given by
[X[lrv = 32522, lIxi — x;5{[1Wi; [8]. We cluster the node
set based on the optimization problem [15, 16]
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with the constraint set

0= {X € [0,1V2E  x; = ey, fori € Ly,

3 X =1 forz':l,...,N}.
k

Here, e; denotes the kth standard unit vector. One can ei-
ther use (preconditioned) primal dual methods (e.g., [17, 18])
or the closely related augmented ADMM [19] to calculate a
minimizer X of (2) [9]. Node i is then assigned to the cluster
for which Xik is maximal. For the case of very few labeled
nodes, optimization problem (2) has to be augmented with
regularization terms to prevent label sets £ to be separated
out as clusters [9, 15, 16]. It is well known that the total vari-
ation leads to a tighter relaxation of minimum cut problems
than the Laplacian quadratic form [8]. In Theorem 1 we prove
that for the case that a minimizer of (2) assigns each node to
exactly one cluster (each row of X has an entry greater %),
the induced partition is a solution of the minimum cut prob-
lem (1). Related results have been recently derived in [20,21].
A proof of Theorem 1 can be found in the Appendix.

Theorem 1. Let W be the weighted adjacency matrix of a
graph and let X be a minimizer of the TV minimization prob-
lem (2). If each row of X has an entry greater % then the
partition (Vy, = {i : Xip > f(ufor alll #+ k})szl of Visa
solution of the minimum cut problem (1).

Local cluster updates

We are now in the position to formulate Algorithm 1, updat-
ing the clusters locally based on information of the current
and previous time instant. Step 1 of Algorithm 1 determines
all edges which have changed significantly from time instant
t — 1 to ¢ and step 2 determines the set V. of nodes adjacent
to those edges. The number of operations required for step 1
scales linearly with |E? U £'71|, where £! denotes the edge
set of the graph at time instant ¢ (for (i,7) ¢ £ UL we
have V[/fj_1 - ij = 0). Step 3 determines the sets 4, of
nodes whose cluster assignment is possibly incorrect. Here
we used the sets of nodes whose attraction to its assigned
cluster V,gt_l) is only slightly higher than the attraction to
one of the other clusters. E.g., in the case § = 0, this yields
the nodes that are in the topological boundary of one of the
clusters. However, any other selection of the set of uncer-
tain nodes is possible. Step 4 defines the set I/ of unlabelled
points as the union of the sets Ay and V., and step 5 defines
the sets £y, of the labelled points of cluster V}. In the final
step 6, the new clusters are determined by updating the un-
labeled points U. Since all labelled points are kept constant,
the per-iteration complexity of the augmented ADMM solv-
ing (2) scales linearly with the number of edges adjacent to an
unlabelled point | Uiezs Uje fm:w;,,. >011 (%, ) }| and the num-
ber of clusters K, cf. [9]. We point to the fact that both, the
removal and the insertion of graph nodes can be handled by
our algorithm without additional effort. Inserted nodes just
have to be treated as unlabelled points. The disappearance
of a cluster also does not effect our algorithm. However, the
appearance of an additional cluster can not be handled with
the current version of our algorithm. For the time instant a
new cluster appears another (unsupervised) clustering algo-
rithm has to be used. Thereafter, one can continue updating
according to Algorithm 1.

3. EXPERIMENTS

To verify this approach to be valid we use it to track the posi-
tion of two balls in a video in front of a static background. For
that, each frame of the video is transformed into a graph by
treating each pixel as a node and connecting it with its neigh-
bours. The weight of the edges is defined by the Gaussian
kernel

llxi =113 Hfz‘*fjl\;)
exp | — - Xi —Xjll2 <r
Wij _ p ( 203 20? ’ || C ]” i
0, otherwise,

where x; and x; are the positions of the i-th and j-th pixel
and I; and I, are the grayscale intensities. The parameters
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0., oy and r can be used to set the influence of the distance,
the grayscale intensities, and the maximum distance of pixels
that are connected, respectively. In our setup of the algorithm
weused o, = 5, 07 = 35, and r = /2 and for the parameters
in step 2 and step 3 of Algorithm 1 we sete = 0.5 and § = 0.
6 = 0 gives a selection of possibly incorrect pixels which is
precisely the union of topological boundaries of all clusters.
As initial value for the labels, we manually assigned a label
to each pixel of the first frame.

Figure 1 shows the results of clustering for selected
frames of a video in which two balls collide. The first column
of images shows the starting position (top) of the balls and
the manually generated cluster assignment (bottom), the sec-
ond image in this column is completely black as there were
no pixels for which a cluster assignment was calculated. In
the second column it can be seen that during a collision the
clusters do not join to a single cluster. The reason for this
can be seen in the image of updated pixels: For both balls
there are black spots in its interior, which means that there are
also samples of this cluster. In this frame there also appears
a tail at one of the balls which is a false result that appears
because the individual frames are blurry and so there are no
sharp edges that can be detected. Due to the selection of the
pixels that are updated in every step, this tail is corrected in
the following steps. In frame 12, directly after the collision,
it disconnects from the ball until it vanishes completely in
frame 22.

In all images in the second row there are several small
white spots which mean that the graph changed in this area.
Indeed the intensitiy of each pixel is disturbed by noise. To-
gether with e = 0.5 it is sufficient that the distance of the
intensities of two neighboring pixels changes from 0 to 7 to
cause a significant change in the graph. But as those spots
do not have interior points, they converge immediately to the
surrounding cluster and do not yield false results.

4. CONCLUSIONS

In this paper, we considered the problem of clustering on
dynamic graphs. We presented a low complexity ADMM
based algorithm performing only local cluster updates via
semi-supervised TV minimization. A direct connection of
the optimization problem to a minimum cut was derived. In
our numerical experiments, we demonstrated the usefulness
of our approach via tracking objects in a video with static
background.

Appendix: Proof of Theorem 1
Let X be a minimizer of (2) with each row having an entry
greater than 1. For matrices X € {0,1}V*¥ the induced

2
clusters Vy, = {i : X, = 1} fulfil

HXHTvzi(Z > wy). 3)

k=1 1i€VL jeV\Vy

Consequently the minimum cut problem (1) is equivalent to
the TV minimization problem (2) restricted to matrices X €
{0, 1}V <K We now show that the matrix Y given by

1, if Xy, > Xy foralll # k,
Y, = , i g > Xy foralll # @
0, else,

has the same TV as X, and is therefore also a minimizer
of (2). Since (1) is equivalent to (2) for matrices X €
{0, 1}V <K the clusters induced by Y minimize (1) and the
theorem holds true.

LetS € RV*K pe givenby S = Y - X. Then, fore > 0,

||X:|:€S||TV = Z Z Z |X2k —Xjk :te(Sik —Sjk)‘Wij.
i j k
o)

WCSCtAk = Zk—XjkandBi =Sy — S k- If|A |>
e| B!, then
A 4 eBE | = |AF| £eBEl,  AEBE >0,
|AF| FelBEl,  AEBE <0,

This in combination with (5) implies that
|X £ eS|rv = ||X||rv £eC (6)

for some constant C' € R. If)A(ik > 0and X ik > 0 (or th <
0 and Xjk < 0), then S;p = 1 — Xk and Sjk =1 - X

(or S;p = —1 — Xik and Sj = —1 — Jk) Consequently
1Sik — Sixl = | Xir — Xl and |AL| > ¢|B| holds true
fore = 1. Iff(ik < 0and X
|Xix — Xjx| > 0and |A};| > €| Bf;| holds true for e < B4

We further note that X +¢S € Q fore € [—1,1]. Since X has
minimum TV the constant C in (6) has to be zero (otherwise

jk > 0 (or vice versa), then
|A%|




Fig. 1: Comparison of frames of the original video and the results of clustering. This comparison shows frame number 1, 11, 12
and 22 from left to right, respectively. The rows of images show the original frames, the pixels that have been updated in white
and the constant pixels in black, and the three resulting clusters in white, grey, and black from top to bottom, respectively.

either [ X+eS||pv < [|X[[rv or | X—eS|lrv < [|X]rv)and
we can add the matrix €S to the matrix X without increasing
the TV. By successive addition of multiples of S to X we
derive that | Y| v = [|X||1v.
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