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Abstract— In this work we propose a novel method to
efficiently predict dynamic signals over both space and time,
exploiting the theory of sampling and recovery of band-limited
graph signals. The approach hinges on a multi-layer graph
topology, where each layer refers to a spatial map of points
where the signal is observed at a given time, whereas different
layers pertain to different time instants. Then, a dynamic learning
method is employed to infer space-time relationships among
data in order to find a band-limited representation of the
observed signal over the multi-layer graph. Such a parsimonious
representation is then instrumental to use sampling theory over
graphs to predict the value of the signal on a future layer, based
on the observations over the past graphs. The method is then
tested on a real data-set, which contains the outgoing cellular data
traffic over the city of Milan. Numerical simulations illustrate
how the proposed approach is very efficient in predicting the
calls activity over a grid of nodes at a given daily hour, based
on the observations of previous traffic activity over both space
and time.

Index Terms—Graph topology inference, multi-layer graphs,
sampling over graphs, data traffic interpolation.

I. INTRODUCTION

Over the last years, the research field known as Graph Signal

Processing (GSP) has extended classical signal processing

tools to the analysis of signals defined over graph, see, e.g.,

[1]–[3]. A key feature of GSP is that the analysis tools

come to depend on the graph topology. As an example, the

Graph Fourier Transform (GFT) for undirected graph has been

defined as the projection of the observed signal onto the space

spanned by the eigenvectors of the graph Laplacian matrix [1].

Consequently, whenever the graph structure is not known a

priori, the inference of the topology from the observed data

plays a crucial role in determining the properties of the graph

signal. There are many works in literature aimed at learning

the graph topology from a set of observations [4], [5]. By

modelling the observations as random variables or processes,

the graph topology typically reflects correlations among sig-

nals defined over its vertices. Alternative methods using the

partial correlation [4] or Gaussian graphical models [6] have

also been deeply investigated. Some GSP-based approaches

make assumptions about the graph by enforcing properties

such as sparsity and smoothness of the signals [7], [8]. There

are also some recent works that focus on learning the graph

topology from signals that diffuse over a graph [9], [10], [11].

In [12], Ioannidis et al. proposed novel methods based on
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structural models for joint inference of the network topology

and time-evolving processes over the graph. This joint graph-

process inference problem has been also deeply investigated

in [13], where to reveal additional structural information of

the network, the authors modelled data as multilayer networks

whose nodes belong to different groups, termed layers [14].

The layers can represent, for example, the spatial variation of

a graph signal at a given temporal snapshot, so that different

layers represent the spatial-temporal evolution of the observed

signal. Then, a key challenge becomes to learn the multi-layer

graph topology by catching the time inter-layers relationships.

In our recent work [15], we proposed a method to associate

a graph topology with the observed data in order to build a

signal that is band-limited over the inferred graph. Enforcing

band-limitedness of the signal enables the usage of sampling

theory over graphs, see e.g. [16], which is appealing in all real

situations where collecting a large number of observations is

not possible or economically efficient.

In this work, we hinge on the graph topology inference

proposed in [15] and we generalize it to build an efficient

prediction strategy for data that vary both along space and

time. In particular, the approach consists of two main steps:

1) Learn a multi-layer topology so that the space-time data

can be modeled as a band-limited graph signal over the multi-

layer graph; 2) Predict the signal over a future graph layer

by hinging on sampling theory over the inferred multi-layer

topology. As real data application of this framework, we

consider the outgoing calls activity in the city of Milan, thus

showing how, observing data samples from past layers, we

can predict with a good accuracy the value of the signal over

space and time.

II. SAMPLING THEORY FOR GRAPH SIGNALS

We consider an undirected graph G = {V , E} composed

of N nodes, where V = {1, . . . , N} and E = {aij}i,j∈V ,

denote the vertex and edge sets, respectively, with aij > 0,

if there is a link between node j and node i, or aij = 0,

otherwise. The graph G can be described using the adjacency

matrix A = {aij}Ni,j=1 ∈ R
N×N , which collects all the edge

weights aij for i, j = 1, . . . , N . The combinatorial graph

Laplacian is defined as L , D − A, where D is the degree

diagonal matrix containing the node degrees di =
∑

j aij for

i = 1, . . . , N on its diagonal. Since the graph is undirected,

the Laplacian matrix is symmetric and positive semidefinite.

We write its eigendecomposition as L = UΛU
T , where U



is the matrix whose columns are the eigenvectors {ui}Ni=1 of

L, whereas Λ is a diagonal matrix whose diagonal entries are

the eigenvalues of L. A signal y defined over a graph G is

as a mapping from the vertex set to the set of real numbers,

i.e. y : V → R. For undirected graphs, the GFT s of a graph

signal y is defined as the projection of y onto the subspace

spanned by the eigenvectors U = {ui}Ni=1 of the Laplacian

matrix L, i.e. s = U
T
y [1], [2]. A band-limited graph signal

can then be represented as:

y = Us, (1)

where the GFT vector s is sparse. Given a subset of indices

K ⊆ V , we define the band-limiting operator over the set K
as BK = UΣKU

T , where ΣK is a diagonal matrix whose

i-th diagonal entry is 1, if i ∈ K, and 0 otherwise. A signal

y is said to be perfectly band-limited, within the index set K,

if BK y = y [16]. If the signal is band-limited we can apply

sampling theory to reconstruct the overall signal by observing

only over a subset of nodes I. Let us denote by r = GI y

the observed signal, where GI is a vertex-selection diagonal

matrix, whose i-th diagonal entry is given by 1 if i ∈ I, and

0 otherwise. Necessary and sufficient conditions to recover

y from the sampled signal r are that y is band-limited, i.e.,

BK y = y, and [16]

‖G
I
BK‖2 < 1, (2)

where G
I

denotes the selection matrix operating over I , i.e.,

the complement set of I; ‖A‖2 denotes the spectral norm of

matrix A. A necessary condition for the recovery of the overall

signal from a subset of samples is that the number of samples

has not to be smaller than the bandwidth K , which is equal

to the cardinality of K. Assuming (2) holds true, the entire

signal y can be recovered from r as follows:

y = UK

(

U
T
KGIUK

)−1
U

T
K r (3)

where UK is the N × K matrix whose columns are the

eigenvectors of L associated with the signal bandwidth [17].

III. MULTI-LAYER GRAPH TOPOLOGY INFERENCE

Let us assume to observe a set of N time series over T
consecutive time instants. We denote the observation at time

t as the vector y
t
i ∈ R

N×1, where t = 1, . . . , T is the

temporal index within a time frame indexed by i. Our first

goal is to capture the relations among the entries of these

vectors y
t
i by associating to these values a multi-layer graph

composed of T layers, where each layer refers to a generic

time instant t and is given by a graph of N nodes. The structure

of the multi-graph is not known a priori and we wish to

infer its topology by observing M snapshots (frames) yt
i, for

i = 1, . . . ,M . Given a number M of time frames, we infer

the structure of the multi-layer graph by extending the method

proposed in [15], which finds a block sparse representation of

the data by learning a graph, whose Laplacian matrix admits

the sparsifying dictionary as its eigenvectors. By extending

our approach in [15] to a multi-layer structure, our goal is to

associate a multi-layer graph topology with the data in such a

way that the observed signal turns out to be band-limited over

the inferred multi-layer graph. The key idea of this paper is

that inferring a topology such that the observed signal is band-

limited over the multi-layer graph enables the application of

graph sampling theory to perform prediction.

Therefore, assuming that at each layer t we observe the

same set of N nodes, we introduce the multi-layer graph

GT = {VT , ET }, where the set of vertices VT is composed

of NT = NT nodes, with T the number of layers, or,

equivalently, the number of time slots in the frame interval.

The edge set ET consists of all edges connecting nodes

inside each layer and between layers. Then, we denote by

L the NT × NT dimensional Laplacian matrix associated

with GT . We assume to collect a set of M training vectors

yi = [y1
i ; . . . ;y

T
i ] ∈ R

NT×1, i = 1, . . . ,M , and we

wish to enforce the band-limited structure by finding the

orthonormal matrix U ∈ R
NT×NT and the sparse vectors

si ∈ R
NT×1, i = 1, . . . ,M , that minimize the fitting error

∑NT

i=1 ||yi−Usi||2F . We denote by S , [s1, . . . , sM ] the GFT

coefficient matrix of size NT × M collecting all the vectors

si, i = 1, . . . ,M , where si is the GFT of the graph signal yi.

Assuming that the transform coefficients si share a common

zero support, S is a block-sparse matrix having multiple null

rows and we define the set of K-block sparse matrices as

BK , {S = [s1, . . . , sM ] ∈ R
NT×M |S(n, :) = 0, ∀n 6∈ K ⊆

VT , K = |K|}, where S(n, :) denotes the nth row of S. Then,

defining the observation training matrix as Y , [y1, . . . ,yM ],
we can write this matrix in compact form as Y = US.

Our goal is to learn first the orthonormal transform matrix

U and the sparse matrix S from the observation data-set Y.

Then, based on U, we infer the graph topology by recovering

the Laplacian matrix L that admits the columns of U as its

eigenvectors. Proceeding as in [15], the first step is to learn

the pair of matrices (U,S) jointly, up to a rotation matrix, by

finding the block-sparse columns {si}Mi=1, and the orthonormal

vectors {ui}NT

i=1 that minimize the fitting error ‖ U
T
Y−S ‖2F ,

by solving the optimization problem:

min
U∈R

NT ×NT ,S∈R
NT ×M

‖ U
T
Y − S ‖2F (PU,S)

s.t. U
T
U = I, u1 = b1,

S ∈ BK

where we force U to be unitary and to contain an eigen-

vector proportional to the vector of all ones, by a coefficient

b = 1/
√
NT . Although problem PU,S is non-convex, in [15]

we proposed an algorithmic solution that alternates between

the minimization with respect to S and U at each step k,



iteratively, as follows:

1. Ŝ
(k)

, argmin
S∈R

NT ×M

‖(Û(k−1)
)TY − S‖2F (Sk)

s.t. S ∈ BK ,

2. Û
(k)

, argmin
U∈R

NT ×NT

‖UT
Y − Ŝ

(k)‖2F (Uk)

s.t. U
T
U = I, u1 = b1,

where the superscript (k) denotes the step k of the algorithm.

The method iterates until a termination criterion is met, within

a prescribed accuracy. As illustrated in [15], even if the two

problems Sk and Uk are non-convex, they admit a closed

form solution, which can be efficiently evaluated with a low

complexity cost.

Once we have found an estimate ÛK of the Laplacian

eigenvectors and Ŝ of the sparse representation, the graph

learning problem is formulated as follows

min
L∈R

NT ×NT ,CK∈RK×K

f(L,Y, Ŝ) + µ||L||2F (Pf )

s.t. L ∈ L, tr(L) = p

LÛK = ÛKCK, CK � 0

where L represents the class of valid combinatorial Laplacian

matrices, i.e.

L ,

{

L ∈ SNT

+ | L1 = 0, Lkn = Lnk ≤ 0, ∀k 6= n
}

,

with SNT

+ the set of real, symmetric and positive semidefinite

matrices. In [15], we considered two different choices of

the objective function f(L,Y, Ŝ), leading to the two graph

learning strategies: i) the Total Variation based Graph Learning

(TV-GL) algorithm where

f(L,Y) = TV(L,Y) = −
M
∑

i=1

NT
∑

k,n=1

Lkn|yi(k)− yi(n)|

is the total variation of the graph signals Y, with yi(l) the

lth entry of the observation vector yi. This approach tends

to connect nodes where the observed signals are similar and

to disconnect nodes with different values; ii) the Estimated-

Signal-Aided Graph Learning (ESA-GL) algorithm, where

f(L, ŜK) = tr(YT
LY

T ) = tr(Ŝ
T

KCKŜK).

In problem Pf , the trace of L is forced to assume a fixed

value p > 0 to avoid the trivial solution; furthermore, the

Frobenius norm penalty in the objective function, controlled

by the coefficient µ > 0, is added to avoid too sparse solutions.

Indeed, increasing µ, the method drives the solution towards

denser graphs with a small values of the Frobenius norm. Note

that both the TV-GL and ESA-GL problems are convex, so that

they can be efficiently solved.

Observed traffic at time t
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Recovered traffic from samples at time t−1
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Recovered traffic from samples at time t−2
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Fig. 1: (a) Observed calls map from hours 9 : 00 − 10 : 00
a.m. at time t corresponding to day 25-11-2013; recovered

map from samples (b) at time t− 1 and (c) at time t− 2.

IV. PREDICTION OF THE TRAFFIC DATA MAPS

Once the multi-layer graph has been inferred by applying

the strategy described in the previous section, we can recon-

struct the overall signal by using (3) to recover the value of

the traffic over the vertices belonging on the future layers,

depending on the values observed over the past ones. In this

work we apply our graph topology inference method to the

recovery of the outgoing cellular activity generated by the

telecommunication operator Telecom Italia, over the city of

Milan, Italy [18]. The activity, expressed in terms of issued

calls, is spatially aggregated using a squared grid of N = 36
nodes, with a spatial resolution of about 235 meters, covering
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Fig. 2: Normalized mean squared error versus the number of

samples.

the area around the historical center of Milan. We observe

the calls daily activity map in November 2013 and data are

temporally aggregated for each day over an interval of one

hour, by observing a time frame of T = 4 consecutive days,

from hours 7 : 00 to 11 : 00. The overall number of nodes in

the inferred multi-layer graph GT is NT = N · T = 144 and

the layer t will correspond to day t, with t = 1, . . . , T . Once

the multi-layer graph has been learnt, we assume that such

relationships hold for a certain amount of time. Exploiting

such a structure, we apply sampling theory to predict the signal

over future layers by collecting only a subset of samples in the

previous layers. Thus, after inferring the graph eigenvectors

matrix ÛK, with a very small bandwidth, i.e. |K| = 7, we

apply the Max-Det greedy sampling strategy in [16], [17], to

select the subset of nodes over which to collect the signal

values. Given this set of samples, we use a training set

of M = 12 working days to predict from (3) the traffic

map on the remaining ones. Then, in Figure 1a we report

the aggregated call activity from 9 to 10 a.m., at time t
corresponding to November 25th 2013. In Figs. 1b and 1c we

illustrate the recovered maps by using 20 samples from the

instants t − 1 and t− 2, respectively. Comparing these maps

with the true one, shown in Fig. 1a, it can be noticed that

the prediction is quite accurate even though based only on a

limited number of previous observations. To better investigate

how much we can predict the future activities from the past, in

Fig. 2 we plotted the normalized mean squared error (NMSE)

versus the number of samples for the cases where the calls

activity at each time t is recovered from samples observed

at the time intervals t − 1 or t − 2. The numerical results

are averaged over 8 working days and 4 consecutive hours.

We also compare the results by using the Max-Det sampling

selection strategy with random sampling. We can notice that,

as expected, the performance improves as the number of

observed samples is increased, and random sampling performs

worse than the Max-Det sampling.

V. CONCLUSIONS

In this work we proposed an efficient signal prediction

method to recover signals that vary both over space and

time. The approach is based on the inference of a multi-

layer graph that describes the causal relations among the data,

in such a way that the observed signals appear to be band-

limited over the learned graph. Enforcing the signal band-

limitedness property enables the use of sampling theory to

predict the signal in future times from past observations.

Numerical results on the prediction of real data traffic show

the good performance of the proposed method.
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