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Abstract—This note studies the worst-case recovery error of low-
rank and bisparse matrices as a function of the number of one-bit
measurements used to acquire them. First, by way of the concept of
consistency width, precise estimates are given on how fast the recovery
error can in theory decay. Next, an idealized recovery method is proved
to reach the fourth-root of the optimal decay rate for Gaussian sensing
schemes. This idealized method being impractical, an implementable
recovery algorithm is finally proposed in the context of factorized
Gaussian sensing schemes. It is shown to provide a recovery error
decaying as the sixth-root of the optimal rate.

I. INTRODUCTION

We are interested in matrices that are simultaneously low-rank
and bisparse, i.e., anticipating over some notation to be introduced
momentarily, matrices in the set

Σ
[r]

(s) :=
{
X ∈ Rn×n : rank(X) ≤ r, ∃S, T ⊆ JnK,

|S| = |T | = s, XS×JnK = 0, XJnK×T = 0
}
,

with 0 ≤ r ≤ s ≤ n. Determining the minimal number of linear
measurements allowing for uniform stable recovery of matrices in
Σ

[r]

(s) is a difficult problem, e.g. [1] contains negative results for
optimization-based recovery, while [2] showed, with some caveats,
that Θ(rs ln(n/s)) measurement suffice. Here, we consider a sim-
ilar problem for quantized linear measurements, hoping for more
favorable conclusions in this case. Precisely, suppose that matrices
X ∈ Σ

[r]

(s) are acquired via the one-bit measurements

yi = sgn(〈Ai,X〉F ) = sgn(tr(A>i X)), i ∈ JmK. (1)

We ask: how large should m be to make it possible to derive, from
y ∈ {±1}m, an approximant X ′ such that ‖X − X ′‖F ≤ ε,
or, turning things around, how fast can ‖X − X ′‖F decay when
m increases? Phrased in terms of consistency width, Section II
addresses this question with lower and upper estimates that almost
match. A (weaker) upper estimate also appears in Section III, which
introduces an idealized recovery scheme not enforcing consistency of
the approximant. This idealized scheme being impractical (probably
NP-hard), we exhibit in Section IV a multistep recovery scheme
working with specific sensing schemes.

Notation: Given M ∈ Rn×n, MΩ1×Ω2 represents the submatrix
of M indexed by Ω1 × Ω2 ⊆ JnK × JnK, with JnK := {1, . . . , n}.
The set Ω ⊆ JnK stands for JnK \Ω. The Frobenius norm is denoted
by ‖·‖F and the Frobenius inner product by 〈·, ·〉F . Given index sets
S, T ⊆ JnK, the set Σ

[r]
S×T contains all rank-r matrices supported on

S×T . A tilde over a set K ⊆ Rn×n, e.g. Σ̃
[r]

(s) or Σ̃
[r]
S×T , means that

this set is intersected with the sphere Sn×nF of Rn×n with respect to
the Frobenius norm. The notation for the unit ball is Bn×nF .

We often rewrite (1) in more compact form by defining the map
A : M ∈ Rn×n 7→

(
〈Ai,M〉F

)m
i=1
∈ Rm, so that (1) also reads

y = sgnA(X) with sgnA := sgn ◦A. The sign operator sgn acts
entrywise when applied to a vector. We say that A is a Gaussian
random map when the matrices A1, . . . ,Am are independent n×n
Gaussian random matrices, i.e., (Ai)k,l ∼i.i.d. N (0, 1). The adjoint
of A is the map A∗ : v ∈ Rm →

∑
i viAi ∈ Rn×n. All absolute

constants are denoted by C,C′, c, c′, . . . and their values can change
from line to line.

II. CONSISTENCY WIDTH

The mth consistency width of a set K ⊆ Sn×nF is defined as

CWm(K) := inf
A:Rn×n→Rm

sup{‖X −X ′‖F : X,X ′ ∈ K,

sgnA(X) = sgnA(X ′)}.

Essentially, CWm(K) provides the best (with respect to A) worst-
case error of any consistent recovery scheme, i.e., one that outputs
X ′ ∈ K with the same one-bit measurements as the sensed matrix
X ∈ K, see [3]. We shall show that

c
rs

m
≤ CWm (Σ̃[r]

(s)

)
≤ C

rs

m
ln
(nm
rs

)
. (2)

A. Lower estimate

Let us first establish the lower bound in (2). Given K ⊆ Sn×nF , we
define the smallest achievable worst-case error of any combination
of one-bit maps sgnA with recovery schemes ∆ : {±1}m → K by

Em(K) := inf
(A,∆)

sup
X∈K

‖X −∆
(

sgnA(X)
)
‖F .

Note that ∆ is not required to output a consistent approximant.
However, the smallest achievable worst-case errors using consistent
or unrestricted schemes are in fact equivalent, as emphasized below.

Proposition 1. For any K ⊆ Sn×nF , one has

Em(K) ≤ CWm(K) ≤ 2Em(K). (3)

Proof. Given (A,∆) and X,X ′ ∈ K sharing the same one-bit mea-
surements, in view of ∆(sgnA(X)) = ∆(sgnA(X ′)), there holds
‖X−X ′‖F ≤ ‖X−∆(sgnA(X))‖F +‖X ′−∆(sgnA(X ′))‖F ,
which yields the rightmost inequality in (3).

Now, given A and X ∈ K, we choose ∆(sgnA(X)) as an
arbitrary matrix X ′ ∈ K consistent with X . The leftmost inequality
in (3) follows easily.

Proposition 1 implies in particular that the lower bound in (2) can
be derived from the following lower estimation of Em(Σ̃

[r]

(s)).

Theorem 1. For an error level ε > 0 , one has

Em
(
Σ̃

[r]

(s)

)
≤ ε =⇒ m ≥ Cε−1rs. (4)

Equivalently, this means that Em
(
Σ̃

[r]

(s)

)
≥ C rs

m
.

Proof. Suppose that Em
(
Σ̃

[r]

(s)

)
≤ ε. We fix subsets S, T of JnK with

|S| = |T | = s ≥ r, a matrix M ∈ Rn×r such that MS×JrK = 0
and MS×JrK is full rank, and consider the rs-dimensional subspace
S of Rn×n defined by S := {MN : N ∈ Rr×n, N JrK×T = 0}.
Note that S ⊆ Σ

[r]

(s), hence Em(S̃) ≤ E(Σ̃
[r]

(s)) ≤ ε. Therefore, for
any ε′ > ε, say ε′ = 2ε, we can find a pair (A,∆) such that
‖X −∆

(
sgnA(X)

)
‖F ≤ ε′ for all X ∈ S̃. This provides a 2ε-

covering of S̃ with | sgnA(S)| elements. Recall, however, that the
latter is much smaller than the obvious bound 2m. Indeed, [4, Lemma
1] guarantees that the cardinality of the image under sgnA of a d-
dimensional subspace S ′ of Rn×n satisfies | sgnA(S ′)| ≤ ( 2m

d
)d. In

our situation, we thus obtain a 2ε-covering of S̃ with log-cardinality
at most rs ln(2m/(rs)). But, S̃ being isomorphic to the sphere Sr×sF ,
the log-cardinality of such a covering must be at least rs ln(C/ε).
Gathering these two facts gives m ≥ Cε−1rs, and proves (4).



B. Upper estimate

Let us now establish the upper bound in (2). We first show that,
with high probability on a Gaussian random map A, all pairs of
matrices in a set K ⊆ Bn×nF that are consistent under sgnA must be
at most ε apart provided m is large compared to ε and to the intrinsic
set complexity. This complexity is measured by the Kolmogorov
entropy of K, i.e.,

H(K, η) := ln inf{ |G| : G ⊆ K ⊆ G + ηBn×nF },

where the addition is the Minkowski sum between sets. Thus, the
smallest number of translated Frobenius balls with radius η that
cover K is expH(K, η).

Theorem 2 (See also [6]). Let A : Rn×n → Rm be a Gaussian
random map. Given a subset K of Sn×nF and ε > 0, if

m ≥ C
ε
H
(
K, c ε

)
, (5)

then it occurs with probability at least 1− exp(−cεm) that, for all
X,X ′ ∈ K,

sgnA(X) = sgnA(X ′) =⇒ ‖X −X ′‖F ≤ ε. (6)

This result is related to [5, Theorem 2.4]. Under a requirement
similar to (5), it states that a Gaussian random map A defines, with
high probability, a local ε-isometry of K. In particular, it implies that,
for all X,X ′ ∈ K such that ‖X −X ′‖F ≥ ε, one has

| 1
m
‖ sgnA(X), sgnA(X ′)‖H − 1

π
arccos〈X,X ′〉| ≥ cε, (7)

with ‖s, s′‖H := |{i ∈ JmK : si 6= s′i}| for s, s′ ∈ {±1}m. Note
that (7) does not yield the contraposition of (6), since it does not
enforce that sgnA(X) 6= sgnA(X ′).

Proof of Theorem 2. The stated version appears in [6, Theorem 1.5].
For the sake of diversity of the arguments, we follow the idea from
[4, Theorem 2] and prove a result that would still imply the upper
bound in (2), but does require strengthening the assumption (5) to

m ≥ C
ε
H
(
K, c ε

n

)
. (8)

We shall prove that P0 ≤ exp(−cεm), where

P0 := P
(
∃X,X′∈ K : ‖X −X′‖F > ε, sgnA(X) = sgnA(X′)

)
.

For a number ρ ∈ (0, ε/2) yet to be chosen, we consider a ρ-covering
{X1, · · · ,XK} of K with K = expH(K, ρ). Given X,X ′ ∈ K
satisfying ‖X−X ′‖F > ε and sgnA(X) = sgnA(X ′), we select
k, k′ ∈ JKK such that ‖X −Xk‖F ≤ ρ and ‖X ′ −Xk′‖F ≤ ρ,
implying that ‖Xk −Xk′‖F ≥ ε− 2ρ and that sgnA(Xk + Z) =
sgnA(Xk′ +Z′) where Z := X−Xk and Z′ := X ′−XK′ both
have norm at most ρ. It follows that

P0 ≤ P
(
∃k, k′ ∈ JKK : ‖Xk −Xk′‖F ≥ ε− 2ρ,

∃Z,Z′ ∈ ρBn×nF : sgnA(Xk + Z) = sgnA(Xk′ + Z′)
)
.

With Ω := {(k, k′) ∈ JKK2 : ‖Xk −Xk′‖F ≥ ε − 2ρ}, a union
bound then gives

P0 ≤
∑

(k,k′)∈Ω Pk,k′ ,

where the summands are

Pk,k′ := P
(
∃Z,Z′ ∈ ρBn×nF : sgnA(Xk +Z) = sgnA(Xk′ +Z′)

)
= P

(
∃Z,Z′ ∈ ρBn×nF : ∀i ∈ JmK,
sgn(〈Ai,Xk + Z〉F ) = sgn(〈Ai,Xk′ + Z′〉F )

)
.

Let us observe that, for (k, k′) ∈ Ω,

Pk,k′ ≤ P
(
∀i ∈ JmK,∃Z,Z′ ∈ ρBn×nF :

sgn(〈Ai,Xk + Z〉F ) = sgn(〈Ai,Xk′ + Z′〉F )
)

=
∏m
i=1 P

(
∃Z,Z′ ∈ ρBn×nF :

sgn(〈Ai,Xk + Z〉F ) = sgn(〈Ai,Xk′ + Z′〉F )
)

≤
∏m
i=1

(
1− 1

π
arccos(〈Xk,Xk′〉F ) +

√
π
2
nρ
)
,

where the last step was an application of [4, Lemma 9]. In view of
arccos(〈Xk,Xk′〉F ) ≥ ‖Xk −Xk′‖F ≥ ε− 2ρ and of the choice
ρ = cε/n for an appropriate c, we obtain

Pk,k′ ≤
∏m
i=1

(
1− ε

2π

)
≤ exp(− ε

2π
m).

Altogether, we conclude that

P0 ≤ K2 exp(− ε
2π
m) = exp(2H(K, c ε

n
)− ε

2π
m),

which readily implies the result under the assumption (8).

Interestingly, an explicit bound for the Kolmogorov entropy of the
set of low-rank and bisparse matrices can be obtained as follows.

Proposition 2. Given r, s ∈ JnK with r ≤ s and η > 0, one has

H
(
Σ̃

[r]

(s), η) ≤ 2s ln(en/s) + r(2s+ 1) ln(9/η)

≤ Crs ln
(
n/(ηs)

)
.

Proof. Fixing subsets S, T of JnK with |S| = |T | = s, one can find
an η-covering GS,T of Σ̃

[r]
S×T with cardinality |GS,T | ≤ (9/η)r(2s+1),

see [7, Lemma 3.1]. In view of Σ̃
[r]

(s) =
⋃
S,T Σ̃

[r]
S , an η-covering

of Σ̃
[r]

(s) is then given by G :=
⋃
S,T GS,T . Using Stirling’s bound,

we derive that H(Σ̃
[r]

(s), η) ≤ ln |G| ≤ ln
[(
n
s

)2
(9/η)r(2s+1)

]
≤

2s ln(en/s) + r(2s+ 1) ln(9/η), which concludes the proof.

Theorem 2 and Proposition 2 combine into the following result.

Corollary 1. Let A : Rn×n → Rm be a Gaussian random map.
Given ε > 0, if

m ≥ C
ε
rs ln( n

εs
), (9)

then it occurs with probability at least 1 − exp(−cεm) that (6) is
fulfilled for all X,X ′ ∈ Σ̃

[r]

(s).

With Corollary 1 at hand, we can justify the upper bound in (2). For
this purpose, consider ε > 0 making (9) an equality. The assumption
of Theorem 2 then holds, so there is a linear map A : Rn×n → Rm
such that

sup
X,X′∈Σ̃

[r]
(s)

sgn A(X)=sgnA(X′)

‖X −X ′‖F ≤ ε.

We conclude by remarking that

ε = C
m
rs ln( n

εs
) ≥ C rs

m
, and in turn ε ≤ C

m
rs ln( cnm

rs
),

which implies the desired upper bound on CWm(Σ̃
[r]

(s)).

III. IDEALIZED ALGORITHM FOR GAUSSIAN SENSING

Corollary 1 — as well as Theorem 2 for more general sets — says
that any X ∈ Σ̃

[r]

(s) is well approximated by any other X ′ ∈ Σ̃
[r]

(s)

sharing the same one-bit measurements y ∈ {±1}m. It does not,
however, exhibit a scheme to create an approximant from y. We now
provide such a scheme by considering the projected back projection

X ′ = P
Σ

[r]
(s)

(A∗y). (10)

2



Here, P
Σ

[r]
(s)

denotes the projection onto the set Σ
[r]

(s), but we stress

from the onset that computing it is not a realistic task, see [2] for
a related NP-hardness statement. We note also that X ′ need not be
consistent, in the sense that sgnA(X ′) is not necessarily equal to y,
but that it has the same structure as X . The essential tool behind our
argument is a restricted isometry property for A over the set Σ

[r]

(s)

established below for Gaussian measurements.

Theorem 3. Let A0 : Rn×n → Rm be a Gaussian random map.
Given δ ∈ (0, 1), if

m ≥ C
δ2
rs ln(n

s
), (11)

then, with probability exceeding 1 − 2 exp(−cδ2m), the map A =√
π
2

1
m

A0 respects, for all Z ∈ Σ
[r]

(s),

(1− δ)‖Z‖F ≤ ‖A(Z)‖1 ≤ (1 + δ)‖Z‖F . (12)

Proof. If we overlook the exact powers of δ, the classical proof
consisting of a concentration inequality followed by a covering
argument will go through — the key ingredient being the estimate
of [7, Lemma 3.1] for the covering number of the ball of Σ

[r]
S×T

combined with a union bound over all index sets S, T of size s.
Alternatively, in terms of Gaussian width, we can invoke the result

from [8] (see also [9]) which guarantees that (12) holds provided

m ≥ Cδ−2w
(
Σ̃

[r]

(s)

)2
. (13)

Then, in view of w(∪Kk=1Kk) ≤ maxk w(Kk) + 3
√

lnK for all
subsets K1, . . . ,KK of the sphere (see [10, Lemma 12(ii)]) and of
the fact that Σ̃

[r]

(s) = ∪S,T Σ̃
[r]
S×T with w(Σ̃

[r]
S×T )2 ≤ Crs, we deduce

w
(
Σ̃

[r]

(s)

)
≤ C
√
rs+ 3

√
2s ln ( en

s
) ≤ C

√
rs ln(n

s
).

It is clear that (13) holds under the assumption (11).

We now state and prove the main result of this section. The argu-
ment is an adaptation of the technique presented in [11, Section 8.4].

Theorem 4. Assuming that (12) holds on Σ̃
[2r]

(2s), any X ∈ Σ̃
[r]

(s)

acquired via y = sgnA(X) is approximated by the matrix X ′

defined in (10) with error

‖X −X ′‖F ≤ C
√
δ. (14)

Proof. We write the singular value decompositions of X and X ′ as
X =

∑r
k=1 σkukv

>
k and X ′ =

∑r
k=1 σku

′
kv
′>
k , with the vectors

uk,vk being supported on some S, T , |S| = |T | = s, and the
vectors u′k,v

′
k being supported on some S′, T ′, |S′| = |T ′| = s.

Let also PS denote the orthogonal projection onto the linear space
S = span

{
u1v

>
1 , . . . ,urv

>
r ,u

′
1v
′>
1 , . . . ,u′rv

′>
r

}
⊆ Σ

[2r]

(2s). Notice
that PS(X) = X and PS(X − X ′) = X − X ′ since X ∈ S
and X−X ′ ∈ S. Because the matrix X ′ is the best approximant to
A∗ sgnA(X) from Σ

[r]

(s), it is a better approximant to A∗ sgnA(X)

than X is, i.e., ‖A∗ sgnA(X)−X ′‖2F ≤ ‖A∗ sgnA(X)−X‖2F .
Introducing X in the left-hand side and expanding the square yields

‖X −X ′‖2F ≤ 2〈X −X ′,X −A∗ sgnA(X)〉F
= 2〈PS(X −X ′),X −A∗ sgnA(X)〉F
= 2〈X −X ′,X − PS(A∗ sgnA(X))〉F
≤ 2‖X −X ′‖F ‖X − PS(A∗ sgnA(X))‖F ,

which implies that

‖X −X ′‖F ≤ 2‖X − PS(A∗ sgnA(X))‖F . (15)

Taking ‖X‖2F = 1 into account, we remark that

‖X − PS(A∗ sgnA(X))‖2F = 1 + ‖PS(A∗ sgnA(X))‖2F
− 2〈X,PS(A∗ sgnA(X))〉F . (16)

Now, thanks to PS(A∗ sgnA(X)) ∈ Σ
[2r]

(2s), we have

‖PS(A∗ sgnA(X))‖2F = 〈A∗ sgnA(X),PS(A∗ sgnA(X))〉F
= 〈sgnA(X),A(PS(A∗ sgnA(X)))〉
≤ ‖A(PS(A∗ sgnA(X)))‖1
≤ (1 + δ)‖PS(A∗ sgnA(X))‖F ,

which simplifies to

‖PS(A∗ sgnA(X))‖F ≤ 1 + δ. (17)

Besides, thanks to PS(X) = X and X ∈ Σ
[r]

(s), we also have

〈X,PS(A∗ sgnA(X))〉F = 〈X,A∗ sgnA(X)〉F
= 〈A(X), sgnA(X)〉 = ‖A(X)‖1 ≥ (1− δ). (18)

Putting (17) and (18) together in (16) gives

‖X − PS(A∗ sgnA(X))‖2F ≤ 1 + (1 + δ)2 − 2(1− δ) ≤ Cδ.

Finally, substituting in (15), we arrive at ‖X −X ′‖F ≤ C
√
δ.

To close this section, we reformulate (14) by stating that, with
high probability, the recovery error for projected back projection with
Gaussian random maps achieves the decay rate

‖X −X ′‖F ≤ C
(
rs ln(n/s)

m

)1/4

,

since the restricted isometry property (12) holds in the regime (11).

IV. FACTORIZED GAUSSIAN SENSING

While the projected back projection scheme (10) is impractical,
changing the sensing map A : Rn×n → Rm allows for the design
of a practical algorithm to recover matrices in Σ̃

[r]

(s) with provable
recovery error decaying as a root of rs ln(n/s)/m. The strategy
follows similar arguments developed for fast estimation of low-rank
and row-wise sparse matrices from nested linear measurements [12],
as well as for sparse phase retrieval [13], and also imitated in [2] for
low-rank and bisparse recovery from standard, i.e., not quantized,
measurements. It consists in defining a sensing map A : Rn×n →
Rm associated with matrices

Ai := B>A′iC ∈ Rn×n, i ∈ JmK,

where A′1, . . . ,A
′
m ∈ Rp×p and B,C ∈ Rp×n for some p chosen

later. The one-bit measurements made on X ∈ Rn×n through
the map A : Rn×n → Rm can also be interpreted as one-
bit measurements made on BXC> ∈ Rp×p through the map
A′ : Rp×p → Rm associated with the A′i. Namely, in view of
〈B>A′iC,X〉F = 〈A′i,BXC>〉F , we have

y = sgnA(X) = sgnA′(BXC>). (19)

We will see that, under appropriate assumptions on A′, B, C, a
good approximant to X ∈ Σ̃

[r]

(s) constructed from y = sgnA(X) is

X ′ := Hcol
(s)

{
Hrow

(s)

[
B>H[r](A′∗y)

]
C
}
. (20)

Here, H[r] denotes the operator of best rank-r approximation (ob-
tained by keeping r leading singular elements), while Hrow

(s) (re-
spectively Hcol

(s)) stands for the operator of best approximation by
s-row-sparse (respectively s-column-sparse) matrices, i.e., obtained

3



by keeping s rows (respectively s columns) with largest `2-norms.
The appropriate assumption on A′ a restricted isometry property of
order 2r with constant δ′ ∈ (0, 1), reading

(1− δ′)‖Z‖F ≤ ‖A′(Z)‖1 ≤ (1 + δ′)‖Z‖F (21)

whenever Z ∈ Rp×p has rank ≤ 2r. The appropriate assumptions
on D = B,C are standard restricted isometry properties of order 2s
with constant δ ∈ (0, 1), reading

(1− δ)‖z‖22 ≤ ‖Dz‖22 ≤ (1 + δ)‖z‖22 (22)

whenever z ∈ Rn is 2s-sparse. It is routine to verify that the later
condition guarantees that, for any k ≥ 1,∣∣〈(I −D>D)Z,Z′〉F

∣∣ ≤ δ‖Z‖F ‖Z′‖F (23)

whenever the row-supports of Z,Z′ ∈ Rn×k have combined size at
most 2s. Under this condition, for any s-row-sparse Z ∈ Rn×k seen
through the inexact measurements Y = DZ + E ∈ Rp×k, one has

‖Z −Hrow
(s) [D>Y ]‖F ≤ 2δ‖Z‖F + 2

√
2‖E‖F . (24)

Writing Z′ = Hrow
(s) [D>Y ] and M = Z − Z′, this comes from,

using in turn the defining property of Z′, (23), and (22),

‖M‖2F = ‖D>Y −Z′‖2F − ‖D>Y −Z‖2F + 2〈Z−D>Y ,M〉F
≤ 2〈Z−D>Y ,M〉F = 2〈(I−D>D)Z,M〉F − 2〈E,DM〉F
≤ 2δ‖Z‖F ‖M‖F + 2‖E‖F (1 + δ)1/2‖M‖F .

We now state and prove the main result of this section.

Theorem 5. Given δ ∈ (0, 1
2
) and δ′ ∈ (0, 1), under assumptions

(21) on A′ and (22) on B and C, any X ∈ Σ̃
[r]

(s) acquired via
y = sgnA(X) is approximated by the matrix X ′ given in (20)
with error

‖X −X ′‖F ≤ C(
√
δ′ + δ).

Proof. In view of (19), the vector y ∈ {±1}m provides one-bit
measurements made on the rank-r matrix BXC> ∈ Rp×p through
the sensing map A′ : Rp×p → Rm. Since this map satisfies the
restricted isometry property (21), it is known (see [14, Theorem 2]
or even Theorem 4 with s = n = p) that

‖cXBXC> −H[r](A′∗y)‖F ≤ C
√
δ′, (25)

with cX := ‖BXC>‖−1
F . As an aside, we notice that both matrices

XC> ∈ Rn×p and X> ∈ Rn×n are s-row-sparse, so that

(1− δ)‖XC>‖2F ≤ ‖BXC>‖2F ≤ (1 + δ)‖XC>‖2F , (26)

(1− δ)‖X>‖2F ≤ ‖CX>‖2F ≤ (1 + δ)‖X>‖2F , (27)

hence, since ‖XC>‖F = ‖CX>‖F and ‖X>‖F = ‖X‖F = 1,

(1− δ)2 ≤ ‖BXC>‖2F ≤ (1 + δ)2. (28)

Now, viewing H[r](A′∗y) as inexact measurements made on the
s-row-sparse matrix Z := cXXC> ∈ Rn×p via B, namely
H[r](A′∗y) = BZ + E with E := H[r](A′∗y) − cXBXC>,
(24) implies that∥∥cXXC> −Hrow

(s)

[
B>H[r](A′∗y)

]∥∥
F

≤ 2δcX‖XC>‖F + 2
√

2‖E‖F ≤ C
(
δ +
√
δ′
)
, (29)

where the last inequality used (26) and (25). Similarly, viewing
(Hrow

(s)

[
B>H[r](A′∗y)

]
)> = CZ′ + E′ as inexact measurements

made on the s-row-sparse matrix Z′ := cXX> ∈ Rn×n via C with
E′ := (Hrow

(s)

[
B>H[r](A′∗y)

]
)> − cXCX>, (24) implies that∥∥cXX> −Hrow

(s)

{
C>(Hrow

(s)

[
B>H[r](A′∗y)

]
)>
}∥∥

F

≤ 2δcX‖X>‖F + 2
√

2‖E′‖F ≤ C
(
δ +
√
δ′
)
, (30)

where the last inequality used (28) and (29). By noticing that
Hrow

(s) (M>) =
(
Hcol

(s)(M)
)>, (30) actually reads

‖cXX −X ′‖F ≤ C
(
δ +
√
δ′
)
.

The final result follows from a triangle inequality and the fact that
‖X− cXX‖F =

∣∣‖BXC>‖F −1
∣∣/‖BXC>‖F ≤ Cδ/(1− δ) ≤

2Cδ, which is a consequence of (28).

We conclude by remarking that assumption (21) is valid when
A′ : Rp×p → Rm is a properly normalized Gaussian random map
with m � δ′−2rp (see [14, Theorem 1] as an instantiation of [8])
and that assumption (22) is valid when B,C ∈ Rp×n are a properly
normalized Gaussian random matrices with p � δ−2s ln(n/s).
Choosing δ′ = δ2 < 1/4, we thus arrive, with high probability,
at ‖X −X ′‖F ≤ Cδ with m � δ−6rs ln(n/s), i.e.,

‖X −X ′‖F ≤ C
(
rs ln(n/s)

m

)1/6

.

We note that the power 1/6 is certainly not optimal — it can e.g. be
increased by replacing H[r] by a scheme improving on

√
δ′ in (25).
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