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Abstract—We study the problem of estimating a structured
high-dimensional signal x0 ∈ Rn from noisy 1-bit Gaussian
measurements. Our recovery approach is based on a simple
convex program which uses the hinge loss function as data
fidelity term. While such a risk minimization strategy is typically
applied in classification tasks, its capacity to estimate a specific
signal vector is largely unexplored. In contrast to other popular
loss functions considered in signal estimation, which are at least
locally strongly convex, the hinge loss is just piecewise linear, so
that its “curvature energy” is concentrated in a single point. It
is therefore somewhat unexpected that we can still prove very
similar types of recovery guarantees for the hinge loss estimator,
even in the presence of strong noise. More specifically, our error
bounds show that stable and robust reconstruction of x0 can
be achieved with the optimal approximation rate O(m−1/2) in
terms of the number of measurements m. Moreover, we permit a
wide class of structural assumptions on the ground truth signal,
in the sense that x0 can belong to an arbitrary bounded convex
set K ⊂ Rn. For the proofs of our main results we invoke an
adapted version of Mendelson’s small ball method that allows
us to establish a quadratic lower bound on the error of the first
order Taylor approximation of the empirical hinge loss function.

I. MOTIVATION

We consider the problem of estimating an unknown signal
vector x0 ∈ Rn from 1-bit observations of the form

yi = fi(〈ai,x0〉) ∈ {−1,+1}, i = 1, . . . ,m, (1)

where a1, . . . ,am ∈ Rn is a collection of known measurement
vectors and fi : R → {−1,+1}, i = 1, . . . ,m, are binary-
valued quantization functions. The number of samples m is
typically much smaller than the ambient dimension n, so
that the equation system of (1) is highly underdetermined.
Such types of recovery tasks have recently caught increasing
attention in various research areas, most importantly in the
field of 1-bit compressed sensing [1], [2], [3]. The quantization
step is motivated by real-world sensing schemes in which only
a finite number of bits can be (digitally) processed during
transmission. Let us emphasize that the quantizers fi can be
completely deterministic, e.g., fi = sign, but they could be
also contaminated by noise in the form of random bit flips.

A large class of signal estimation methods can be formu-
lated as an empirical risk minimization problem of the form

min
x∈Rn

1
m

m∑
i=1

L(〈ai,x〉, yi) subject to x ∈ K, (PL,K)

where L : R× R→ R is a convex loss function that assesses
how well the candidate model ai 7→ 〈ai,x〉 matches with the
true outputs yi, and K ⊂ Rn is a constraint set, which encodes
the structural assumptions on x0 (e.g. sparsity). In this work,
we will focus on a special instance of (PL,K) that is based
on the so-called hinge loss given by Lhng(v) := [1− v]+ :=
max{0, 1 − v} for v ∈ R. Using L(v, v′) := Lhng(v · v′) as
loss function, the program of (PL,K) reads as follows:

min
x∈Rn

1
m

m∑
i=1

[1− yi〈ai,x〉]+ subject to x ∈ K.

(PLhng,K)
This estimator is specifically tailored to deal with binary ob-
servations: Intuitively, by minimizing the objective functional
of (PLhng,K), one tries to select x ∈ K in such a way that
sign(〈ai,x〉) equals yi ∈ {−1,+1} for as many samples as
possible. In particular, a solution x̂ to (PLhng,K) yields a good
predictor ai 7→ sign(〈ai, x̂〉) of the true outputs yi, based on
the assumption that this can be achieved with a vector from K.
While this simple heuristic explains the success of hinge loss
minimization in classification problems, the performance of
(PLhng,K) at signal estimation tasks is only poorly understood.
Compared to reliable prediction, successful signal estimation
usually relies on relatively strong model assumptions which
ensure that one actually retrieves the ground truth signal x0

and not just any good predictor. Our goal is therefore to
establish theoretical recovery guarantees for (PLhng,K) under
the hypothesis of (1) with Gaussian measurement vectors.

A. Main Contributions

Recent results, e.g. [4], [5], show that for a large class of loss
functions L, the estimator (PL,K) is capable of reconstructing
structured signals x0 ∈ K from quite general non-linear
(including 1-bit) measurements. While this includes popular
choices of L, such as the logistic loss or the square loss, the
hinge loss does not meet known sufficient conditions which
ensure successful signal estimation. In this work, we show that
1-bit compressed sensing via hinge loss minimization is feasi-
ble for large classes of signal models K and 1-bit observation
schemes (1). In particular, our guarantees significantly improve
a recent result from Kolleck and Vybı́ral [6], whose analysis
of the hinge loss estimator is limited to `1-constraints and a
far more restrictive noise pattern. Moreover, the error bounds
in [6] do only achieve an approximation rate of O(m−1/4),



while Theorem 1 and Theorem 3 below exhibit the (optimal)
rate of O(m−1/2). Our improvements are due to a substantially
different localized analysis, in which the “quadratic” part of
the hinge loss is explicitly taken into account.

II. MAIN RESULTS

This part presents our main theoretical findings on signal
estimation via hinge loss minimization. Let us begin by
giving a precise definition of the observation model that was
informally introduced in (1):

Assumption 1 (Measurement Model). Let f : R→ {−1,+1}
be a (random) quantization function and let a ∼ N (0, In) be
a standard Gaussian random vector which is independent of
f . We consider a noisy 1-bit Gaussian measurement model of
the form

y := f(〈a,x0〉) ∈ {−1,+1}

where x0 ∈ Rn is the (unknown) ground truth signal. Each
of the m samples {(ai, yi)}i∈[m] ⊂ Rn × {−1,+1} is then
drawn as an independent copy from the random pair (a, y).
Consequently, the binary observations are given by

yi = fi(〈ai,x0〉), i = 1, . . . ,m,

where fi is an independent copy of f .

The prototypical example of a 1-bit quantizer is the sign-
function, that is, f = sign. We refer to this (noiseless)
observation scheme as the perfect 1-bit model. Since all
information on the magnitude of x0 is lost in this case, we will
additionally assume that the signal vector x0 is normalized.
Moreover, in many scenarios of interest, we have some prior
knowledge on the signal’s structure. The hinge loss estimator
(PLhng,K) encodes such structural assumptions by means of a
constraint set K ⊂ Rn. Hence, we supplement Assumption 1
with the following signal model:

Assumption 2 (Signal Model). We assume that ‖x0‖2 = 1
and x0 ∈ K for a certain subset K ⊂ Rn, which is called the
signal set. Furthermore, we require that K is convex, bounded,
and 0 ∈ K.

The most prominent signal structure in compressed sensing
is sparsity. A signal vector x0 ∈ Rn is called sparse, if
‖x0‖0 ≤ s for some s � n. The set of all unit-norm s-
sparse vectors is however not convex, so that Assumption 2
is not fulfilled. Nevertheless, the Cauchy-Schwarz inequality
implies that both K =

√
sBn1 and K =

√
sBn1 ∩Bn2 may serve

as admissible convex relaxations, which meet the conditions
of Assumption 2.

Given prior information on the structure of the target vector,
a key issue in signal estimation concerns the design of recovery
procedures that effectively exploit this information and ensure
recovery from a number of measurements m that scales as the
complexity of this structure. If the signal vector’s structure is
encoded by means of a signal set K, its Gaussian width has
turned out to be a useful complexity measure:

Definition II.1 The Gaussian width of a bounded set K ⊂
Rn is defined as

w(K) := E[ sup
x∈K
〈g,x〉],

where g ∼ N (0, In) denotes a standard Gaussian random
vector.

Many results — including ours below — show that the
square of the Gaussian width often determines the (minimal)
number of samples to ensure recovery via convex optimization
[7], [8]. Since the Gaussian widths of

√
sBn1 ∩Bn2 and

√
sBn1

are bounded as follows (see [9, Sec. 2 and 3])

w(
√
sBn1 ) .

√
s log(n), w(

√
sBn1 ∩Bn2 ) .

√
s log( 2n

s ),

this implies that (approximately) s-sparse vectors are effi-
ciently estimated if the number of measurements m is larger
than s multiplied by a logarithmic factor in the ambient
dimension. The second (localized) complexity measure that
we need in order to formulate our recovery results is the so-
called conic effective dimension [8]:

Definition II.2 (Conic Effective Dimension) The conic effec-
tive dimension (or statistical dimension) of a subset K ⊂ Rn
in x0 is defined as

d0(K − x0) := w(C(K,x0) ∩Bn2 )2,

where

C(K,x0) := {τ(x− x0) | x ∈ K, τ ≥ 0}

is the descent cone of K at x0.

The conic effective dimension is a complexity measure that,
geometrically speaking, measures the size (narrowness) of the
cone generated by K−x0. As an example, if x0 is s-sparse and
lies on the boundary of an `1-ball, then (see [7, Prop. 3.10])

d0(‖x0‖1Bn1 − x0) . s log( 2n
s ).

Before we state our main results, let us briefly outline the
general idea behind signal estimation via empirical risk mini-
mization. By the law of large numbers, we expect that for m
large enough, a solution x̂ to (PLhng,K), that is, a minimizer
of the empirical risk function

R̄(x) := 1
m

m∑
i=1

Lhng(yi〈ai,x〉) = 1
m

m∑
i=1

[1− yi〈ai,x〉]+

on the set K, will be close to a minimizer x∗ of the expected
risk function R(x) := E[R̄(x)] = E[Lhng(y〈a,x〉)] on K.
Hence, in order for x̂/‖x̂‖2 to be close to x0 ∈ Sn−1, the
vector x∗/‖x∗‖2 has to be close to x0 as well. The last
issue strongly depends on whether or not K is contained
in Bn2 : Under a mild condition on the 1-bit quantizer f in
Assumption 1, if K ⊂ Bn2 , then there exists a minimizer
of the expected risk function on K which is contained in
the span of x0, see Lemma 1. In contrast, even for the
choice f = sign, if K is not contained in Bn2 , then one



generally cannot deduce that x∗/‖x∗‖2 is close to x0. As
a consequence, hinge loss minimization using the estimator
(PLhng,K) might fail if K 6⊂ Bn2 . The key observation is that
by instead considering a minimizer x∗ of the expected risk
function on the larger set µK, where µ ≥ 1, then x∗/‖x∗‖2
will be close to x0 for µ large enough, see Proposition 1.
Hence, for general convex sets K we will instead consider a
tunable version of the estimator (PLhng,K), see Definition II.3.
In view of these structural differences, we sort our recovery
results according to whether or not K is contained in Bn2 .

A. Recovery in Subsets of the Unit Ball

The first lemma shows that if K ⊂ Bn2 , then the expected
risk function attains its minimum on the span of x0.

Lemma 1. Let g ∼ N (0, 1) be a standard Gaussian random
variable. Moreover, let µ ∈ [0, 1] be a minimizer of

min
s∈[0,1]

E[Lhng(sf(g)g)], (2)

where f : R→ {−1,+1} is the 1-bit quantizer from Assump-
tion 1. Assuming that E[f(g)g] > 0, we have that µ > 0 and
µx0 ∈ K satisfies

R(µx0) = min
x∈K
R(x).

Let us emphasize that E[f(g)g] > 0 is a reasonable
assumption because it ensures that the linear measurement
g = 〈a,x0〉 and the output variable y = f(g) are positively
correlated. We need a second mild condition on the quantizer
f in order to formulate our main recovery result Theorem 1:

Assumption 3 (Correlation Conditions). Let g ∼ N (0, 1)
be a standard Gaussian random variable and let f : R →
{−1,+1} be the 1-bit quantizer from Assumption 1. We
assume that the following two model conditions hold true:

1) λ := λf := E[f(g)g] > 0,
2) E[f(g) sign(g) | |g|] ≥ 0 (a.s.).

We call λ the correlation parameter of the quantizer f .

Next, we state our main recovery result for signal sets K
that are contained in the Euclidean unit ball.

Theorem 1 (Signal Recovery in Unit Ball). Let the model
conditions of Assumption 1, 2, and 3 be satisfied, assume that
K ⊂ Bn2 , and let µ be defined according to (2). For every t ∈
(0, µ) and η ∈ (0, 12 ), the following holds true with probability
at least 1− η: If the number of samples obeys

m & λ−2 · t−2 ·max{d0(K − µx0), log(η−1)},

then any minimizer x̂ of (PLhng,K) satisfies∥∥∥∥x0 −
x̂

‖x̂‖2

∥∥∥∥
2

≤ t

µ
. t ·

√
log(λ−1) .

A remarkable feature of Theorem 1 is that the impact of the
underlying 1-bit measurement model is completely controlled
by the correlation parameter λ. Since λ can be regarded as a
constant scaling factor, recovery via (PLhng,K) is still possible

when the specific output rule is unknown and the signal-to-
noise ratio is very low. As an example, let us consider the case
where independent sign flips corrupt the quantization process.
Here, the 1-bit observations are given by

yi = εi · sign(〈ai,x0〉), i = 1, . . . ,m,

where εi are independent copies of a Bernoulli random vari-
able ε ∈ {−1,+1} with P[ε = 1] = p > 1

2 . This measurement
model is an instance of Assumption 1 for the 1-bit quantizer

f(v) = fp(v) := ε · sign(v).

Notice that p = 1 corresponds to perfect (noiseless) 1-bit
observations. It is straightforward to verify that this noisy 1-
bit model satisfies Assumption 3 with correlation parameter
λfp = (2p − 1)

√
2
π . Consequently, Theorem 1 shows that

signal recovery succeeds if the number of measurements m
satisfies

m & 1
(2p−1)2 · Ct,K ,

where the constant Ct,K > 0 hides the dependence on the
oversampling factor t and the signal complexity. Hence, signal
recovery is still feasible in the presence of strong noise where
p ≈ 1

2 .

B. Recovery in General Convex Sets

Sometimes, it can be computationally appealing to drop the
unit-ball assumption and to allow for “larger” convex signal
sets. A common example is an `1-penalty, for which (PLhng,K)
can be reformulated as a linear program (cf. [6, Sec. VI.A]).
This motivates us to investigate the recovery performance of
hinge loss minimization under arbitrary convex constraints.
We will make the following model assumptions throughout
this subsection:

Assumption 4 (General Signal Sets). Let x0 ∈ Sn−1 be a unit
vector in Rn and let a ∼ N (0, In) be a standard Gaussian.
We consider perfect 1-bit Gaussian measurements

yi = sign(〈ai,x0〉), i = 1, . . . ,m.

Further, we assume that x0 ∈ K for a signal set K ⊂ Rn
which is convex, bounded, and closed.

Under Assumption 4, a (normalized) minimizer of the
expected risk function might no longer be close to x0. The
picture changes completely if we upscale the signal set K:

Proposition 1. Let Assumption 4 be satisfied and assume that
µ & 1. Then every expected risk minimizer x∗ on µK (i.e.,
R(x∗) = minx∈µK R(x)) satisfies∥∥∥∥x0 −

x∗

‖x∗‖2

∥∥∥∥
2

.
1

µ
.

This motivates us to introduce an adapted version of
(PLhng,K) that allows us to rescale the signal set:

Definition II.3 (Scalable Hinge Loss Minimization) Let As-
sumption 4 hold true and let µ > 0 be a fixed scaling



parameter. The estimator x̂ ∈ Rn is defined as a solution
of the convex program

min
x∈Rn

1
m

m∑
i=1

[1− yi〈ai,x〉]+ subject to x ∈ µK.

(PLhng,µK)

The next result shows that scalable hinge loss minimization
is an efficient reconstruction procedure under Assumption 4:

Theorem 2 (Signal Recovery in Convex Sets). Let the model
conditions of Assumption 4 be satisfied. For every fixed µ > 0
and η ∈ (0, 12 ), the following holds true with probability at
least 1− η: If µ & 1 and the number of samples obeys

m & µ4 ·max{d0(K − x0), log(η−1)}, (3)

then any minimizer x̂ of (PLhng,µK) satisfies∥∥∥∥x0 −
x̂

‖x̂‖2

∥∥∥∥
2

.
1

µ
.

The same assertion holds true if (3) is replaced by

m & µ4 ·max{w(K)2, log(η−1)}.

A downside of Theorem 2 is the relatively slow error decay
of O(m−1/4). Our third main result, Theorem 3, shows that
the factor of µ4 in condition (3) can be replaced by µ2 · t20,
where t0 is an additional geometric parameter that depends on
x0 and K. Formally, it is defined by

t0 := max{1, rad((∂(µK) ∩ Cyl(x0, µ))− µx0)} (4)

where Cyl(x0, µ) denotes the following cylindrical tube
around span{x0}:

Cyl(x0, µ) := {x ∈ Rn | ‖x−〈x,x0〉x0‖2 ≤ 1, 〈x,x0〉 ≥ µ
2 }.

Intuitively, if µ is sufficiently large, the boundary ∂(µK) does
only intersect with the side of Cyl(x0, µ), which has diameter
2. The value of t0 then becomes (almost) independent of µ and
is determined by the “local” geometry of K in a neighborhood
of x0 (of size 1/µ). In this situation, the sampling rate only
scales quadratically in µ:

Theorem 3 (Signal Recovery in Convex Sets – Local Version).
Let the model conditions of Assumption 4 be satisfied and let
t0 be defined according to (4). For every fixed µ > 0 and
η ∈ (0, 12 ), the following holds true with probability at least
1− η: If µ & t0 and the number of samples obeys

m & µ2 · t20 ·max{d0(K − x0), log(η−1)},

then any minimizer x̂ of (PLhng,µK) satisfies∥∥∥∥x0 −
x̂

‖x̂‖2

∥∥∥∥
2

.
1

µ
.

Without any further assumptions on the geometric arrange-
ment of K and x0, it is difficult to make precise statements
about the order of t0. For example, if the boundary of K is

almost orthogonal to span{x0} in a small neighborhood of x0,
we can expect that t0 ≈ 1. But as ∂K gets more “tangent”
to span{x0}, t0 may become significantly larger. However,
as long as t0 is considered as a (possibly large) signal-
dependent parameter, we can always achieve the optimal rate
of O(m−1/2).

III. PROOF STRATEGY

In the following, we give a proof sketch of our main
recovery results Theorem 1–3. For a complete proof, see
[10, Section 6]. Our main strategy is to show that, with
high probability, any minimizer x̂ of the (scalable) hinge loss
minimization program resides in a certain neighborhood of
µx0 for a scaling parameter µ > 0. If this neighborhood is
chosen appropriately (depending on whether or not K ⊂ B2

n),
then the projection of x̂ onto the Euclidean unit sphere will
be close to x0. In order to show that x̂ lies in a neighborhood
of µx0, it suffices to show that the convex excess risk

E(x) := R̄(x)− R̄(µx0), x ∈ Rn,

is positive on the boundary of this neighborhood. Such a
localization argument is widely used in estimation theory
and statistical learning. In order to show positivity of the
excess risk, we consider the first order Taylor expansion of
x 7→ R̄(x) at µx0. The approximation error is then given by

Q(x, µx0) := R̄(x)− R̄(µx0)− 1
m

m∑
i=1

zi〈ai,x− µx0〉︸ ︷︷ ︸
=:M(x,µx0)

,

where M(·, µx0) is the “linearization” of R̄(·) at µx0 with

zi := yi · [Lhng]′(yi〈ai, µx0〉) = −yi ·χ(−∞,1](yi〈ai, µx0〉).

By convexity of R̄(·) the “quadratic” term Q(·, µx0) is always
non-negative. Hence, in order to achieve

E(x) = R̄(x)− R̄(µx0) =M(x, µx0) +Q(x, µx0) > 0

for all x in a fixed subset of Rn, it suffices to show that
Q(·, µx0) uniformly dominates M(·, µx0) on that specific
set. The term M(·, µx0) can be handled by a recent result
of Mendelson [11, Thm. 4.4] which concerns the uniform
deviation of multiplier empirical processes from their mean.
After bounding the quadratic term Q(x, µx0) from below by a
simplified non-negative empirical process, this process is again
controlled using an adaption of Tropp’s version of Mendelson’s
small ball method in [12, Prop. 5.1].
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