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Abstract—We show that the method of distributed noise-
shaping beta-quantization offers superior performance for the
problem of spectral super-resolution with quantization whenever
there is redundancy in the number of measurements. More
precisely, if the (integer) oversampling ratio λ is such that
bM/λc−1 ≥ 4/∆, where M denotes the number of Fourier mea-
surements and ∆ is the minimum separation distance associated
with the atomic measure to be resolved, then for any number
K ≥ 2 of quantization levels available for the real and imaginary
parts of the measurements, our quantization method guarantees
reconstruction accuracy of order O(λ3/2K−λ/2), up to constants
which are independent of K and λ. In contrast, memoryless
scalar quantization offers a guarantee of order O(K−1) only.

I. INTRODUCTION

Analog-to-digital conversion is inherently lossy. It typically
consists of two stages, sampling and quantization, where the
sampling stage produces a stream of scalar samples and the
quantization stage replaces each sample with an element of a
discrete set, called the quantization alphabet. Ideally the sam-
pling stage is lossless (or the distortion is negligible) so that
the distortion is only (or primarily) caused by quantization.

The naive method of quantization is to round each scalar
measurement to the nearest available level in the quantization
alphabet; this is known as memoryless scalar quantization
(MSQ). While MSQ has many advantages in hardware imple-
mentation (e.g. simplicity and robustness), its rate-distortion
performance is highly suboptimal when the sampling map is
redundant, meaning it collects more measurements than the
minimal number needed for perfect reconstruction. This is due
to the fact that a redundant sampling system increases the
ambient dimension of the measurement vectors but not the
intrinsic dimension of the manifold on which these vectors
lie, and therefore, memoryless scalar quantized vectors, lying
in a small neighborhood of this manifold, occupy only an
asymptotically vanishing portion of the rectangular lattice
of available quantization vectors. More efficient quantization
methods achieve improved rate-distortion performance by uti-
lizing some (or all) of the remaining quantization vectors as
well. Noise-shaping quantizers (such as Σ∆ modulators) fall
into this category.

This paper provides a new approach of quantizing non-
harmonic Fourier measurements for the spectral super-
resolution problem. Super-resolution has received considerable

attention in the past several years (e.g. [3], [4]). The goal is
to accurately estimate an unknown discrete measure

µ =

S∑
j=1

ajδtj (1)

defined on T := [0, 1), from its noisy samples

ỹk = yk + zk, k = 0, . . . ,M − 1,

where

yk := µ̂(k) :=

∫ 1

0

e−2πikt dµ(t) =

S∑
j=1

aje
2πiktj (2)

is the k-th Fourier coefficient of µ and the unknown noise
vector z := (zk)M−10 satisfies ‖z‖2 ≤ ε for some known
ε > 0. We emphasize that the total number of spikes S, the
amplitudes a ∈ CS , and the support set T = {tj}Sj=1 are
unknown.

This problem is ill-conditioned if there are points in T that
are too close to one another (e.g. [10], [9], [13]). However,
assuming a lower bound to their minimum separation, it has
been shown that µ can be recovered from its measurements
in a robust way when M is sufficiently large, meaning that
the reconstruction error, when measured in a suitable metric,
is controlled by the noise energy in a graceful manner, and
typically linearly (e.g. [12]).

Since no structure is assumed on the noise, robustness
also becomes the key property that allows for quantization.
In particular, it guarantees that sufficiently high-resolution
quantizers will always produce sufficiently high quality ap-
proximations. However, the question of achievable limits of
quantization accuracy is open. The answer depends on the
interplay between the given (fixed) parameters, such as the
number of measurements, the number of quantization levels
per measurement, and the minimum separation distance of the
measures of interest, as well as the quantization method which
itself is a design parameter.

For simplicity, we will assume in this paper that quanti-
zation is the only source of perturbation. Other (generally
uncontrolled) sources of perturbations can be incorporated into
quantization as well; any such perturbations typically provide
a noise floor. We assume that the real and imaginary parts



of each Fourier measurement is replaced by an element of a
(signal-independent) quantization alphabet A with K levels.

The linear dependence of the reconstruction error on the
noise energy implies that with simple rounding, i.e. MSQ, it
is straightforward to achieve reconstruction accuracy of order
O(K−1). However, since the noise energy is measured in `2,
its bound ε grows with the number of measurements, and
therefore it is not even clear if there is any advantage of
using any additional measurements. For example, the popular
reconstruction method total-variation minimization (TV-min,
see Section III) appears to be indifferent to oversampling in
practice.

Our main result in this paper is that there is an alternative
quantization method, called the distributed noise-shaping β-
encoder (or β-quantization in short) which, together with
an accompanying alternative recovery method derived from
TV-min, is able to exploit any available redundancy. More
precisely, if the (integer) oversampling ratio λ is such that
bM/λc − 1 ≥ 4/∆, where M denotes the number of Fourier
measurements and ∆ is the minimum separation distance as-
sociated with µ, then for any number K of quantization levels,
our quantization method guarantees reconstruction accuracy of
order O(λ3/2K−λ/2), up to constants which are independent
of K and λ. In principle our method can work with other
robust recovery methods, too.

The paper is organized as follows. Section II reviews
the TV-min method and discusses MSQ for spectral super-
resolution. In Section II, we introduce the proposed quanti-
zation method and the main ingredients needed for its error
performance analysis for spectral super-resolution, which is
done in Section IV. Finally, we provide a sample numerical
experiment to demonstrate the practical performance of our
proposed quantization method in Section V.

II. A REVIEW OF TV-MIN FOR SUPER-RESOLUTION AND
MSQ

There are a number of robust recovery algorithms for super-
resolution. For convenience and concreteness, we will focus
on TV-min, also known under the name BLASSO (Beurling
Lasso).

Let us denote by FM the operator which maps the measure
µ to (µ̂(k))M−10 , i.e. with our notation of (2), we have y =
FMµ, where y := (yk)M−10 . Given noisy data ỹ ∈ CM and a
bound ε > 0 on the noise, the TV-min algorithm outputs an
estimate µ̃ of µ given by

µ̃ := arg min{‖ν‖TV : ‖FMν − ỹ‖2 ≤ ε}. (3)

This is a convex program whose feasibility is guaranteed by
the assumption ‖y− ỹ‖2 ≤ ε. The solution may not be unique,
but it is known that there is at least one minimizer which is a
discrete measure which we will identify with µ̃. (See [4], [3],
[11], [2] for this and other results.)

The performance of TV-min depends on the minimum
separation of the measure, defined as

∆(µ) := min
s6=t,s,t∈supp(µ)

|s− t|T. (4)

Here, |s − t|T := minn∈Z |s − t − n| is the “wrap-around”
metric on T. If the number of samples M is sufficiently large
so that

∆(µ) ≥ 4

M − 1
, (5)

then µ̃ provides an accurate estimate of µ in the following
sense: any spurious spikes in µ̃ are smaller than O(ε), the
remaining spikes in µ̃ are within O(1/M) of the true spikes,
and the recovered amplitudes are within O(ε) of the true ones.
More precisely, given the representation

µ̃ =

S̃∑
k=1

ãkδt̃k , (6)

along with the “neighborhood” index sets

IMj :=
{
k : |t̃k−tj |T ≤ 2·0.1649 (M−1)−1

}
, j = 1, . . . , S,

(7)
and the residual index set

IM0 := {1, . . . , S̃} \
S⋃
j=1

IMj , (8)

the following bounds are guaranteed:∣∣aj − ∑
k∈IMj

ãk
∣∣ ≤ C1ε, j = 1, . . . , S, (9)

∑
k∈IMj

|ãk| |tj − t̃k|2T ≤ C2M
−2ε, j = 1, . . . , S, (10)

∑
k∈IM0

|ãk| ≤ C3ε. (11)

Additional details can be found in [12, Theorem 1.2]; see also
[1, Theorems 2.1 and 2.2] for related results.

This result provides an immediate error bound for MSQ.
For each integer K ≥ 2, let ZK denote the K-term origin-
symmetric arithmetic progression of integers with spacing 2
and AK := K−1ZK ⊂ (−1, 1). It is then clear that for all
u ∈ [−1, 1] there exists q ∈ AK such that |u − q| ≤ 1/K.
Assuming that ‖µ‖TV ≤ 1 so that ‖y‖∞ ≤ 1, it follows
that for each complex measurement yk, there is an element
qk ∈ AK+iAK (found by separately rounding the real and the
imaginary parts of yk to elements of AK) such that |yk−qk| ≤√

2/K. Consequently, we have ‖y− q‖2 ≤
√

2M/K. Setting
ỹ = q and ε =

√
2M/K in (3) guarantees, in view of (9)-(11),

an overall reconstruction accuracy of O(
√
M/K).

We can produce a lower bound on the worst-signal re-
construction error of MSQ as follows: Even if we knew
the support T of µ, where |T | = S, memoryless scalar
quantization of the M linear measurements of all possible
coefficient vectors a ∈ CS chosen from any fixed ball results
in a partition of this ball using at most O(MK) hyperplanes,
and therefore into at most (cMK/S)2S cells. (Here c is an
absolute constant.) Consequently, there will always be a cell of
diameter at least O(S/MK) whose elements are all mapped
to the same quantized vector.

Therefore, suppressing the dependence on M , it follows that
MSQ cannot offer error performance better than O(K−1).



III. PROPOSED QUANTIZATION METHOD

Our proposed quantization approach in this paper is based
on the general framework of distributed noise-shaping β-
encoding developed in [6], [7] (see also [5] and [8] for prior
versions). However, the specialization for the spectral super-
resolution problem requires some new choices and adaptations.

Let λ ≥ 1 be an integer which should be thought of as a
lower bound on the oversampling ratio. For the simplicity of
discussion, we assume M is divisible by λ and set m := M/λ.
Let β > 1 be a parameter which shall be chosen later, and
consider the m×M matrix V := Vβ

V :=
[
Im β−1Im · · · β−λ+1Im

]
, (12)

where Im denotes the m×m identity matrix. Observe that

(V y)` =

λ−1∑
k=0

β−kymk+` =

S∑
j=1

ajwje
−2πi`tj

for ` = 1, . . . ,m, where

wj :=
1− β−λe−2πimλtj
1− β−1e−2πimtj

, j = 1, . . . , S. (13)

In other words, we have the relation V y = FmµV where

µV :=

S∑
j=1

bjδtj and bj := ajwj . (14)

Observe that µ and µV have identical supports, but different
amplitudes. However, the weights wj satisfy

1

cβ
≤ |wj | ≤ cβ where cβ :=

1 + β−1

1− β−1
. (15)

Let us define H := Hβ to be the M ×M matrix where

Hj,k :=

{
1, if j = k,

−β, if j = k+m and 1 ≤ k ≤M−m.
(16)

The following is a special case of [7, Lemma 2]:

Lemma 1. Let K ≥ 2 be an integer, and suppose the
parameters α, β, δ > 0 satisfy the inequality

β + αδ−1 ≤ K, (17)

and consider the quantization alphabet A := δ(ZK + iZK).
Then, for any y ∈ CM with ‖y‖∞ ≤ α, there exists q ∈ AM
and u ∈ CM with ‖u‖∞ ≤

√
2δ satisfying the relationship

y − q = Hu. (18)

The mapping y 7→ q implied by the above lemma can be
implemented by means of a simple recursive algorithm. We
omit the details and refer to [6], [7].

The significance of V and H is that V H is very small when
β or λ is large. Indeed, as shown in [6], we have ‖V H‖∞→2 =√
mβ−λ+1. The immediate consequence is that

‖V y − V q‖2 ≤ ‖V H‖∞→2‖u‖∞ ≤
√

2m β−λ+1δ. (19)

The above findings provide the core strategy of our proposed
quantization and recovery method. First, we note that for any

1 < β < K and any 0 ≤ α < ∞, there exists δ > 0 such
that the condition (17) is satisfied. Hence the existence of the
mapping y 7→ q (with a fixed quantization alphabet A) is
guaranteed over any bounded set of inputs y. Next, recall that
with y = FMµ, we have V y = FmµV . Since V q is now a
small perturbation of V y, we can obtain a close approximation
µ̃V of µV by means of any robust super-resolution recovery
method, such as the TV-min algorithm. Then, since µ and
µV have identical supports, we can define an approximate
recovery µ̃ by means of approximate weights w̃j derived from
the approximate support T̃ of µ̃V .

Let us summarize the proposed quantization method.
System parameters and assumptions:
• M (number of Fourier measurements),
• α (upper bound on TV-norm of the input measures),
• ∆ (lower bound on minimum separation distance),
• M = λm, λ ≥ 1, m− 1 ≥ 4/∆,
• K (number of quantization levels),
• β and δ such that (17) holds.

Encoding (quantization) stage:
• Input to quantizer: y such that ‖y‖∞ ≤ α,
• V and H defined via (12) and (16),
• Quantization alphabet: A := δ(ZK + iZK),
• Output of quantizer: q ∈ AM such that ‖V y − V q‖2 ≤√

2m β−λ+1δ.
Decoding (recovery) stage:
• Input to decoder: q,
• Compute a minimum TV-norm measure µ̃V of the form∑S̃

k=1 b̃kδt̃k satisying ‖Fmµ̃V − V q‖2 ≤ εV where

εV :=
√

2m β−λ+1δ;

abort if it cannot be found (e.g. invalid measurements),
• Set

w̃k =
1− β−λe−2πimλt̃k

1− β−1e−2πimt̃k
, k = 1, · · · , S̃,

• Output of decoder: µ̃ =
∑S̃
k=1 ãkδt̃k with ãk := b̃k/w̃k.

IV. ERROR ANALYSIS

Let us start by noting that when the input to the quantizer y
equals FMµ for some µ of the form (1) with ∆(µ) ≥ ∆ and
‖µ‖TV ≤ α, then the decoder will always output a measure
µ̃, thanks to the fact that V y = FmµV where µV is defined
by (14) which guarantees that µV is a feasible measure for
the TV-min program.

Let us now proceed to find an error bound for µ̃. We start
by comparing µ̃V to µV . With the error bounds of the general
TV-min method reviewed in Section II, we have∣∣bj − ∑

k∈Imj

b̃k
∣∣ ≤ C1εV , j = 1, . . . , S, (20)

∑
k∈Imj

|̃bk| |tj − t̃k|2T ≤ C2m
−2εV , j = 1, . . . , S,(21)

∑
k∈Im0

|̃bk| ≤ C3εV . (22)



where the index sets Imj , j = 0, . . . , S are as in (7) and (8),
only for m measurements. Note that for all j ∈ {1, . . . , S},∣∣∣aj− ∑

k∈Imj

ãk

∣∣∣ ≤ 1

|wj |

∣∣∣bj− ∑
k∈Imj

b̃k

∣∣∣+ ∑
k∈Imj

|̃bk|
∣∣∣ 1

wj
− 1

w̃k

∣∣∣.
(23)

With (15) and (20), the first term is bounded by cβC1εV . For
the second term, we note that∣∣∣w−1j − w̃−1k ∣∣∣ ≤ mCβ,λ |tj − t̃k|T (24)

where Cβ,λ stands for the Lipschitz constant of the map

t 7→ 1− β−1e−2πit

1− β−λe−2πiλt
, t ∈ T.

It can be shown Cβ,λ ≤ 4πλβ(β − 1)−2.
Using (24) and Cauchy-Schwarz, we see that the second

term in (23) is bounded by

mCβ,λ

( ∑
k∈Imj

|̃bk| |tj − t̃k|2T
)1/2( ∑

k∈Imj

|̃bk|
)1/2

Note that ‖b̃‖1 ≤ cβα since ‖b̃‖1 = ‖µ̃V ‖TV and

‖µ̃V ‖TV ≤ ‖µV ‖TV ≤ ‖w‖∞‖a‖1 ≤ cβ‖µ‖TV ≤ cβα.

Hence, with (21) we deduce∑
k∈Imj

|̃bk|
∣∣∣ 1

wj
− 1

w̃k

∣∣∣ ≤ Cβ,λ√cβα√C2εV . (25)

Injecting (25) into (23) we have∣∣∣aj − ∑
k∈Imj

ãk

∣∣∣ ≤ cβC1εV + Cβ,λ
√
cβα

√
C2εV . (26)

Finally, we also have∑
k∈Imj

|ãk| |tj − t̃k|2T ≤ cβC2m
−2εV , (27)

∑
k∈Im0

|ãk| ≤ cβC3εV . (28)

which follow readily from (15), (21) and (22).
At this point, we note the following elementary fact: For

any K ≥ 2, setting β := K(λ + 1)/(λ + 2) and δ := (λ +
2)α/K results in β + αδ−1 = K and δβ−λ+1 < eα(λ +
1)K−λ. (See, e.g. [6, Lemma 3.2] and [7, Lemma 1].) This
choice of parameters results in εV ≤ eα

√
2m(λ + 1)K−λ.

Furthermore it is readily seen that β ≥ 4/3, cβ ≤ 7 and
Cβ,λ ≤ 12πλ. Hence it follows from (26), (27) and (28) that
µ is approximated by µ̃ up to resolution O(

√
Mλ3/2K−λ/2).

V. NUMERICAL RESULTS

We compare the reconstruction error, quantified by the term
on the left hand side of (26), when the Fourier samples are
quantized using our proposed beta-quantization versus MSQ.
More specifically, we set ∆ = 1/10 and we randomly select
a measure µ such that ∆(µ) ≥ ∆; the amplitudes are chosen
uniformly at random and normalized to have unit `1 norm.

Fig. 1. Average reconstruction error of MSQ and β-quantization.
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For various choices of λ and K, we quantize the Fourier
measurements using both MSQ and β-quantization. Figure 1
displays the reconstruction error as a function of λ, averaged
over 110 trials. The experiment validates our theoretical results
and also shows that performance of MSQ is suboptimal in the
over-sampling regime.
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[6] Evan Chou and C. Sinan Güntürk. Distributed noise-shaping quanti-
zation: I. Beta duals of finite frames and near-optimal quantization of
random measurements. Constructive Approximation, 44(1):1–22, 2016.
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[8] Evan Chou, C. Sinan Güntürk, Felix Krahmer, Rayan Saab, and Özgür
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