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Abstract—Compressed sensing (CS) is a signal acquisition
paradigm to simultaneously acquire and reduce dimension of
signals that admit sparse representations. When such a signal is
acquired according to the principles of CS, the measurements
still take on values in the continuum. In today’s “digital” world,
a subsequent quantization step, where these measurements are
replaced with elements from a finite set is crucial. We focus on
one of the approaches that yield efficient quantizers for CS: Σ∆
quantization, followed by a one-stage tractable reconstruction
method, which was developed in [20] with theoretical error
guarantees in the case of sub-Gaussian matrices. We propose
two alternative approaches that extend the results of [20] to a
wider class of measurement matrices including (certain unitary
transforms of) partial bounded orthonormal systems and deter-
ministic constructions based on chirp sensing matrices.

Index Terms—compressed sensing, quantization, noise-
shaping, Σ∆ quantization, one-stage reconstruction

I. INTRODUCTION

Compressed sensing (CS) has recently emerged as a rev-
olutionary sampling theory. This new theory is based on
the empirical observation that various important classes of
signals, such as audio and images, admit (nearly) sparse
approximations when expanded with respect to an appropriate
basis or frame, such as a wavelet basis or a Gabor frame. CS
theory shows that one can recover such signals from only a
few linear, non-adaptive measurements. As such, CS provides
a dimension reduction paradigm. However, in todays digitally
driven world, every sampling theory needs to be accompanied
by a quantization theory. Next, we discuss this aspect of CS.

Formally, a signal is a vector x in Rn, where n is potentially
large. We say that x is k-sparse if ‖x‖0 ≤ k where ‖x‖0 is
the cardinality of the support of x = [x1, . . . , xn]T defined as
supp(x) := {j : xj 6= 0}. The set of all k-sparse signals in
Rn is denoted by Σnk .

Suppose x ∈ Σnk or it is compressible, i.e., it can be well
approximated in Σnk such that σk(x) := minv∈Σnk

‖x− v‖1 is
small. Compressed measurements of x are linear, non-adaptive
measurements given by y = Φx+ η. Here Φ is an m× n CS
measurement matrix with m � n and η is additive noise.
Consequently, the “compressed” measurement vector y is still
real valued, this time in Rm, with m � n. As mentioned
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earlier, in the classical signal processing paradigm, such an
acquisition or sampling stage is followed by quantization
where the sample values are mapped from the continuum to a
finite set. While quantization was mostly omitted in the early
CS literature, there has been several recent papers that address
this problem. The approaches in the literature focus mostly
on either “memoryless scalar quantizers” (MSQ) or “noise-
shaping quantizers”.

A. Memoryless scalar quantization for CS

Suppose that x ∈ Rn and y ∈ Rm are as above. An MSQ
with alphabet A rounds off each entry of y (independently) to
the closest element of A [6], [9], [19]. A special case of MSQ
is the 1-bit quantizers, where each measurement is replaced
by its sign [7], [13], [17], [18], i.e., A = {±1}.

One way to analyze the error associated with MSQ is by
interpreting the quantization error as additive noise. Such an
approach shows that one can obtain an approximation x̃ using,
for example, Basis Pursuit Denoise [8], [10]. In that case, we
get an approximation error bound ‖x− x̃‖ that is proportional
to the quantizer resolution, say δ. This theoretical upper bound
as well as the empirical performance –see [11]– does not
improve by increasing the number of measurements m. On the
other hand, it was observed in [11] that in a two-stage recovery
method where the Penrose-Moore pseudo-inverse is used in
the second stage (after support recovery), the error ‖x− x̃‖ is
empiricallyO( 1√

m
). Motivated by this, [16] shows that ‖x−x̃‖

is bounded by the sum of two terms: one that is independent on
m but unobservably small in any realistic setting, and another
that is indeed O( 1√

m
), at least for a wide class of sub-Gaussian

matrices with high probability. Similarly, it was also shown in
the 1-bit CS context in [18] that for a fixed level of sparsity, the
error in approximation using a specific convex minimization
program decays as O( 1

m1/5 ) up to a logarithmic factor.
While these improved results show some decay as a function

of m, this decay is mild, suggesting that MSQ does not utilize
extra measurements efficiently. This leads us to noise-shaping
quantizers.

B. Noise-shaping quantizers for CS

Noise-shaping quantizers were originally introduced in the
context of analogue-to-digital (A/D) conversion of bandlimited



signals [12]. These A/D convertors, called Σ∆ quantizers,
became popular [21] as they can be implemented using low-
accuracy circuit elements and still produce high-accuracy
approximations by oversampling. For many classes of signals
it is much easier to oversample on circuitry compared to using
high-accuracy circuit elements, for example scalar quantizers
Qδ with very small δ.

Motivated by their efficiency in exploiting redundancy, Σ∆
quantizers were considered in the context of frame expansions
(which are inherently redundant). Indeed, they were shown to
yield approximations that improve as the redundancy increases
in the contexts of Gabor frames [23], [24], finite frames in Rd
with certain regularity assumptions [3]–[5], Gaussian random
frames [11], and sub-Gaussian random frames [14], [15].

These results in frame theory were instrumental in early
work that proposed Σ∆ quantization in the setting of CS. In
a nutshell, suppose x ∈ Σnk , Φ ∈ Rm×n be an appropriate CS
measurement matrix, and y = Φx be the noise free compres-
sive measurements. Also, let q be obtained by quantizing y
using an rth order Σ∆ scheme and let D be the difference
matrix as in [20, Section 2.1]. In [11] a two-stage recovery
algorithm was proposed: first, the support set T = supp(x)
is recovered or estimated. Then, the reconstruction vector x̂
is given by x̂Σ∆ = Fq with F = (D−rΦT )†D−r, where
ΦT denotes the restriction of Φ to its columns indexed by T .
While this two-stage reconstruction approach yields superior
decay in approximation error as the number of measurements
m increases –see [11], [14] – there are two major caveats:
The two-stage approach is not robust with respect to additive
noise, and it imposes size requirements on the smallest non-
zero entry of the sparse signal.

II. ONE-STAGE RECOVERY FOR Σ∆-QUANTIZED CS
As a remedy to the issues mentioned above, [20] proposed a

one-stage reconstruction method which computes the approx-
imation x̃ to x by solving the convex optimization problem

(x̂, ν̂) := arg min
(z,ν)
‖z‖1 s.t. ‖D−r(Φz + ν − q)‖2 ≤ Crδ

√
m,

and ‖ν‖2 ≤ ε
√
m. (1)

Fix, now, any ` that is sufficiently large so that ` measurements
suffice to recover x from Φx in the non-quantized CS setting.
Then the approximation x̂ obtained as above satisfies

‖x̂− x‖2 ≤ C
(

(
m

`
)−r+1/2 +

√
m

`
ε
)

(2)

where c, C are constants that do not depend on m, `, n.
Indeed, this method solves the issues mentioned in the

previous section when the CS measurements are obtained via
sub-Gaussian matrices and certain Fourier matrices [22]. On
the other hand, it is not known if this one-stage recovery
method enjoys recovery guarantees when we use other impor-
tant classes of measurement matrices, e.g., random restrictions
of discrete Fourier transform matrices or bounded orthonormal
systems (BOS), or various classes of deterministic measure-
ment matrices.

A. Generalizing to other measurement systems

In order to generalize the results of [20] to other classes
of random matrices and also certain deterministic matrices,
we isolate one main property, which we call (P1), that the
measurement matrices must satisfy for such a generalization.

Property (P1). Suppose that Φ is an m×n unnormalized CS
measurement matrix, with (expected) column norm of

√
m.

We say that Φ satisfies the property (P1) of order (k, `) if the
RIP constant of 1√

`
(Φ)`—where (Φ)` is the restriction of Φ

to its first ` rows—satisfies δ2k < 1/9.

Note that sub-Gaussian matrices, and random restrictions
of BOS (including the DFT matrix) satisfy this property with
high probability for appropriate choices of k and `.

Let y = Φx + η, and ‖η‖∞ ≤ ε. Set H := [CrD
r ε
δ I].

Here Cr is a constant that can depend on the order r and δ
and in the specific case of an rth order greedy Σ∆ quantizer,
Cr = 1/2 [20]. Next, let H = UΣV T be the singular value
decomposition of H . With this notation, the approach used in
[20] is to show that UTΦ satisfies (P1). It is well-known that
sub-Gaussian matrices satisfy (P1) and this is leveraged in [20]
to show that UTΦ satisfies (P1) as well. Yet, this implication
is non-trivial and not necessarily true, for example, when Φ is
a partial BOS.

Here, we propose two ways to circumvent this issue. Specif-
ically, we will devise two novel approaches where it will be
sufficient that Φ (instead of UTΦ) satisfies (P1).

III. TWO NOVEL APPROACHES

A. Approach 1: Using a modified measurement matrix

It can be shown (similar to the proof of Theorem 1 in [20])
that one-stage reconstruction following Σ∆ quantization can
be performed if

(i) Φ satisfies (P1), and
(ii) measurements are obtained using UΦ as opposed to Φ.

In particular, under this condition, the reconstruction error is
as in [20, Theorem 1]. Specifically, the following holds.

Theorem 1. Suppose that Φ is an m×n CS matrix, x ∈ Rn,
and k < ` ≤ m is such that Φ satisfies (P1) of order (k, `).
Suppose the measurements of x are given by y = Φ̃x, where
Φ̃ = UΦ with U as above, and quantized by an rth-order Σ∆
scheme. Then x̂, obtained via (1) after replacing Φ with Φ̃
satisfies

‖x− x̂‖2 ≤ C
(

(
m

`
)−r+1/2δ +

σk(x)√
k

+

√
m

`
ε
)

(3)

where C is a constant that does not depend on m, `, n.

Remark 1. Theorem 1 shows that the one-stage reconstruction
scheme can be applied when the measurement matrix is, e.g.,
UFm,n, UCm,n, or USm,n, for large enough m. Here, Fm,n,
Cm,n, and Sm,n denote random restrictions of a discrete
Fourier transform, discrete cosine transform, and discrete sine
transform, respectively. In fact, one can use UBm,n where
Bm,n is any partial BOS. Furthermore, multiplying any of



these matrices with U can be implemented using FFT, thus
fast, at least when r = 1.

Remark 2. Alternatively, one can apply U after collecting the
measurements. This would require all m analog measurements
be stored until we apply U , and thus is not practicable when
m is large.

B. Approach 2: Using a digital buffer
Aside from the issues raised in Remark 2, the above

approach is not ideal because the measurement matrix UΦ
(specifically U ) depends on m. This means that we must
use a different measurement matrix if we wish to increase
the number of measurements m, i.e., we can not “reuse”
the measurements already collected. This problem would be
resolved if we could modify the scheme so that we first collect
y = Φx; quantize y; and then apply U digitally (which has a
fast implementation) on the quantized measurements.

To that end, we propose the following scheme.
(1) Given a standard CS measurement matrix Φ, collect y =

Φx+ η, where the noise η satisfies ‖η‖∞ ≤ ε.
(2) Fix a small δ′ (much smaller than the desired final

accuracy) and quantize y using an MSQ with step size δ′

resulting in yMSQ. This is a high bit-budget representation
of y and will be discarded after the next stages so, it is
just kept in a buffer (with sufficiently large memory).

(3) Compute UyMSQ, which finely approximates Uy = UΦx
as U is unitary.

(4) Use a Σ∆ quantizer (of order r that matches the matrix
U in step (3)) with step size δ to quantize UyMSQ. This
will be the digital representation of x that we will keep.

Remark 3. The high-resolution representation yMSQ is used
only during data collection and discarded once we obtain the
Σ∆-quantized representation at the end of Step (4).

Finally, we reconstruct an approximation to x by solving

(x̂, ν̂) := arg min
(z,ν)
‖z‖1 s.t. ‖D−r(Φz + ν − q)‖2 ≤ Crδ

√
m

and ‖ν‖2 ≤ δ′′
√
m (4)

with δ′′ := ε+ δ′/2. Note that this method will be successful
provided δ′ in step (2) is sufficiently small to match the
quantization error corresponding to the Σ∆ quantization of
step (4). Thus, we will have to ensure that m ≤ mmax

where δ′ will be chosen depending on mmax (or vice versa).
Collecting all these, we have the following Theorem:

Theorem 2. Let x ∈ Rn, Φ be an m × n CS measurement
matrix, and let k and ` be such that Φ satisfies (P1) of order
(k, `). Suppose that q is obtained from x following the scheme
suggested above where δ′ := δ

(6r)rmrmax
and ‖η‖∞ ≤ ε. If x̂

is obtained via (4), the approximation error satisfies

‖x− x̂‖2 ≤ C
(

(
m

`
)−r+1/2δ +

σk(x)√
k

+

√
m

`
ε
)

(5)

whenever m ≤ mmax. Here C is a constant that does not
depend on m, `, n.

Note that partial BOS satisfy the conditions of Theorem 2.
Further, UyMSQ can be computed fast, at least when r = 1.

IV. ONE-STAGE RECOVERY FOR Σ∆ QUANTIZATION WITH
DETERMINISTIC MATRICES

Chirp sensing matrices constitute an important class of
deterministic matrices, first introduced by Applebaum et al.
[2] in the context of CS. For a prime number p and ω := ei

2π
p ,

the columns of a p × p2 chirp sensing matrix Φ are defined
via

Φrp+m+1 =
[
ωr·02+m·0, ωr·12+m·1, . . . , ωr·(p−1)2+m·(p−1)

]T
(6)

where r and m range between 0 and p− 1. As in the case of
random measurement matrices, it is natural to ask whether Σ∆
schemes can be used to quantize CS measurements obtained
using chirp sensing matrices. Unfortunately, (P1) does not
hold for these matrices. Next we show that this issue can be
resolved by using a certain submatrix of the chirp sensing
matrix Φ defined as follows.

Definition 1. Let p be a prime and Φ the p×p2 chirp sensing
matrix whose columns are indexed by r and m in Zp and given
as in (6). Define Φ̄ as the p × pb√pc submatrix of Φ with
columns as in (6) with r and m restricted to {0, 1, . . . , p−1},
and {b√pc, 2b√pc, ...., (b√pc)2} respectively.

Let x ∈ Σnk , fix a quantization order r and let U be as
defined in Section II-A. We propose to use U Φ̄ to obtain CS
measurements y = U Φ̄ which we will then quantize using
an rth-order Σ∆ scheme to obtain q. We will analyze the
corresponding approximation error for a fixed sparsity level
k as the number of measurements grows. In the case of U Φ̄,
as we increase the number of measurements p, we must also
increase the ambient dimension – as the measurement matrix
is p-by-pb√pc. To deal with this, we embed x, originally in
Rn into the higher dimensional space by padding it with zeros.

The following theorem shows that Φ̄ satisfies the property
(P1) of order (k, `) for appropriate choices of k and `.

Theorem 3. Consider the p× pb√pc matrix Φ̄ as defined in
Definition 1. Then, there exists a prime number p0 such that
for p ≥ p0, the matrix Φ satisfies the property (P1) of order
(k, `) for k ≤ 4

√
p log p and ` = bp3/4 log2 pc.

Remark 4. Theorem 3 shows that the restriction of Φ̄ to its
top ` rows satisfies the RIP of order k such that δ2k < 1/9;
such a conclusion cannot be obtained using the RIP bounds
for chirp sensing matrices. The proof – given in [1] – relies
on estimating certain Gauss-type exponential sums and will
be omitted here due to lack of space.

Corollary 1. Let x ∈ Σnk , let p0 be as defined in Theorem 3,
and suppose that p1 > p0 is a prime number such that k ≤
4
√
p1 log p1. Then, for any p ≥ p1, x can be approximated by

x̂, the solution to (1), if
(i) the measurement matrix is U Φ̄, where Φ̄ is the p×pb√pc

matrix defined as in Definition 1, and
(ii) q is obtained by quantizing U Φ̄ using an rth order Σ∆

scheme.



In the noise-free case, as we increase the number of measure-
ments p, the approximation error satisfies

‖x− x̂‖2 ≤ C(log p)2r−1p−
1
4 (r− 1

2 ) (7)

where C is a constant that does not depend on p0, p, and p1.

Remark 5. Note that the error decay rate O(p−
1
4 (r− 1

2 )) (up
to a factor logarithmic in p) given in Corollary 1 is inferior
to O(p−(r− 1

2 )) which we obtain with random matrices (with
m = p measurements). This behaviour is due to the fact that
the both dimensions of Φ̄ increase as we increase p. One way
to circumvent this issue is to restrict the maximum number of
measurements to some pmax . Indeed, that way one can show
that the approximation error behaves like p−(r− 1

2 ), similar to
the case with random matrices. The experiments we present
in the next section illustrate this behaviour.

V. NUMERICAL EXPERIMENTS

Here we present outcomes of numerical experiments within
the deterministic CS setup we explored in the previous section.
We consider the noise-free setting with exactly sparse signals.
Specifically, we consider p = 61, 137, 223, 307, 397, 487,
593, 677, 787—these correspond to the (18 + 15r)th prime
for r = 0, 1, · · · , 8—and for each prime p, we draw 20
signals, each of which is a 4-sparse signal with a random
support chosen from the set {1, 2, · · · , 61

⌊√
61
⌋
}, and whose

entries are chosen independently from a standard Gaussian
distribution. In other words, the actual ambient dimension of
signals that are considered is 61

⌊√
61
⌋

= 427. For each such
signal, we compute the CS measurements y = U Φ̄ which we
subsequently quantize using a stable rth-order Σ∆ scheme to
obtain q with r = 1. Next, we reconstruct an approximation
x̂ of x using (1) where we set Φ = U Φ̄, δ = 0.1, r = 1, and
ε = 0. Finally, for each p, we compute the average ‖x− x̂‖2.
We repeat this experiment with a second-order Σ∆ quantizer,
i.e., r = 2. The results are reported in Figure 1. Observe
that the approximation error behaves like p−(r−1/2), similar
to the case with random matrices as discussed in Remark 5 as
opposed to order p−

1
4 (r− 1

2 ) of Corollary 1.
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