NP-hardness of £, minimization problems:
revision and extension to the non-negative setting
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Abstract—Sparse approximation arises in many appli-
cations and often leads to a constrained or penalized ¢,
minimization problem, which was proved to be NP-hard.
This paper proposes a revision of existing analyses of NP-
hardness of the penalized ¢, problem and it introduces a
new proof adapted from Natarajan’s construction (1995).
Moreover, we prove that /; minimization problems with non-
negativity constraints are also NP-hard.

I. INTRODUCTION

Sparse approximation appears in a wide range of appli-
cations, especially in signal processing, image processing
and compressed sensing [1]. Given a signal data y € R™
and a dictionary A of size m x n, the aim is to find a signal
x € R" that gives the best approximation y ~ Ax and has
the fewest non-zero coefficients (i.e., sparsest solution).
This task leads to solving one of the following constrained
or penalized ¢, minimization problems:

min o (o)
ly—Ax|l2<e
min — Ax|? £,C’
i ly 12 (o C")
min [ly — Az|3 + Azl (o P)

in which ¢, K and X are positive quantities related to the
noise standard deviation, the sparsity level and regulariza-
tion strength, respectively. Letters C' and P respectively
indicate that the problem is constrained or penalized.
Depending on application, the appropriate statement will
be addressed. It is noteworthy that n and K often depend
on m when one considers the size of problem. ({4C') and
(UpC") are well known to be NP-hard [2,3]. The NP-
hardness of (¢ P) was claimed to be a particular case of
more general complexity analyses in [4,5]. However, we
point out that these complexity analyses do not rigorously
apply to (¢pP) as claimed. In this paper, we justify the
complexity analyses in [4,5] do not apply to problem
(boP), and we provide a new proof for the NP-hardness
of (¢yP) adapted from Natarajan’s construction [2].

In several applications such as geoscience and remote
sensing [6, 7], audio [8], chemometrics [9] and computed
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tomography [10], the signal or image of interest is non-
negative. In such contexts, one often addresses a mini-
mization problem with both sparsity and non-negativity
constraints [10—12]. Adding non-negativity constraints to
£y minimization problems yields the following problems:

min Il]lo (lC+)
x2>0,[|ly—Az||2<e
min ly — Azlf3 (oC'+)
z2>0,[|z|o<K
min ly — Az[|5 + Azl (loP+)

Several papers address non-negative £, minimization prob-
lems in the literature (see, e.g., [13—16]). However, to the
best of our knowledge, the complexity of these problems
has not been addressed yet, the question of their NP-
hardness being still open. Here we show that these prob-
lems are NP-hard and the proof can be derived from the
NP-hardness of ¢y minimization problems.

The rest of paper is organized as follows. In Section II,
we discuss the issues related to NP-hardness of (¢yP) in
existing analyses and we present our proof. In Section III,
we discuss about the NP-hardness of non-negative /g
minimization problems. We draw some conclusions in
Section IV.

II. HARDNESS OF £y MINIMIZATION PROBLEMS

A. Background on constrained {y minimization problems

Let us recall that an NP-complete problem is a prob-
lem in NP to which any other problem in NP can be
reduced in polynomial time. Thus NP-complete problems
are identified as the hardest problems in NP. An NP-
complete problem is strongly NP-complete if it remains
NP-complete when all of its numerical parameters are
bounded by a polynomial in the length of the input.
NP-hard problems are at least as hard as NP-complete
problems. However, NP-hard problems do not need to
be in NP and do not need to be decision problems.
Formally, a problem is NP-hard (respectively, strongly
NP-hard) if a NP-complete (respectively, strongly NP-
complete) problem can be reduced in polynomial time to
it. The reader is referred to [17, 18] for more information
on this topic.



In the literature, problem (¢yC), called SAS in [2],
is well known to be NP-hard [2, Theorem 1]. The NP-
hardness of (£yC) is a valuable extension of an earlier
result: the problem of minimum weight solution to linear
equations (equivalent to (/;C') with e = 0) is NP-hard [17,
p.246]. Davis et al. proved that ({,C"), called M-optimal
approximation in [3], is NP-hard for any K < m [3,
Theorem 2.1]. Both analyses of Natarajan and Davis were
made by a polynomial time reduction from the “exact
cover by 3-sets” problem' which is known to be NP-
complete [17, p.221].

B. Existing analyses on penalized {y minimization

In [4,5], the NP-hardness of ({oP) is deduced as
a particular case of more general complexity analyses.
However, it turns out that the latter do not apply to
(boP), as explained hereafter. Chen et al. [4] address the
unconstrained £,-¢, minimization problem, defined by:

min |y — Az|? + Az} (4-ty)

where A > 0, ¢ > 1 and 0 < p < 1. The authors showed
that problem (¢4-£,) is NP-hard with any A > 0, ¢ > 1
and 0 < p < 1 [4, Theorem 3]. Obviously, ({y,P) is the
case where ¢ = 2 and p = 0. The proof was done by
1) introducing an invertible transformation which scales
any instance of problem ({,-¢,) to the problem ({;-£;)
with A = 1/2, and ii) establishing a polynomial time
reduction from the partition problem which is known to be
NP-complete [17] to the problem ({4-¢,) with A = 1/2.
In other words, they showed that problem ({,-f,) with
A = 1/2 is NP-hard and, because there exists an invertible
transformation from any problem (¢/,-,,) to the one with
A = 1/2, every problem (¢,-¢,) is NP-hard. Similarly, they
showed that (¢,-£,) is strongly NP-hard [4, Theorem 5] by
a reduction from the 3-partition problem which is known
to be strongly NP-hard [17]. The invertible transform used
in [4] is defined by:

&= (2\N"Pe, A= (2)\)"VPA. (1)

Unfortunately, (1) is not well-defined when p = 0. There-
fore, [4, Theorems 3 and 5] do not apply to (¢oP) when
A#£1/2.

Using a different approach, Huo and Chen’s paper [5]
addresses the penalized least-squares problem defined by:

min ||y — Az|3 + A é(|as)), (PLS)
w i=1

where ¢ is a penalty function mapping non-negative values

to non-negative values. The authors showed that (PLS) is

NP-hard if the penalty function ¢ satisfies the following

four conditions [5, Theorem 3.1]:

Cl. ¢(0)=0and VO < 71 < 72, ¢(11) < ¢(72).

C2. There exists 79 > 0 and a constant d > 0 such that

¢(7) = ¢(r0) — d(ro — 7)?

IThe latter problem, denoted by X3C in [2,17], is stated as follows:
Given a set S and a collection C' of 3-element subsets of S (called
triplets), is there a subcollection of disjoint triplets that exactly covers
S?

for every 0 < 7 < 9.
C3. For the aforementioned 7, if 71,79 < 7y then

o(11) + ¢(72) = ¢(11 + 72).

C4. For every 0 < 7 < 19,

¢(1) + d(10 = 7) > $(70)- 2

The proof of [5, Theorem3.1] is by a reduction from
the NP-complete problem X3C to the decision version of
(PLS); this leads to the NP-completeness of the decision
version of (PLS) and so the NP-hardness of (PLS) [5,
Appendix 1]. The authors claimed that the ¢y penalty
function satisfies conditions C1-C4 for 9 = d = 1.
Therefore, the (PLS) problem with the ¢y penalty function
is NP-hard [5, Corollary 3.2]. Unfortunately, it turns out
that the ¢y penalty does not fulfill condition C4 as claimed.
Indeed, for 7 = 0 the strict inequality (2) becomes
¢(0) > 0. Besides, in the proof [5, Appendix 1], the inputs
of the decision problem are not guaranteed to have rational
values. This might also violate the polynomiality of the
reduction. Therefore, [5, Theorem 3.1] does not apply to
o P).

In [5], the authors also mention an alternate proof of
NP-hardness of (¢pP) from Huo and Ni’s earlier paper
[19] as a special case of their results. In this proof [19,
Appendix A.1], the relation between (¢y P) and ({,C) is es-
tablished using the principle of Lagrange multiplier. More
precisely, the authors introduce an instance of (¢,C) in
which e is defined from the minimizer of (¢ P) and argue
that solving (¢y P) is equivalent to solving the mentioned
instance of (¢pC'), which is known to be NP-hard [2].
There are a number of issues in the NP-hardness proof in
[19]. For instance, the proposed transformation between
(lpP) and (£uC) is not a polynomial time reduction.
Besides, it is well known that (¢/yP) and (¢;C') are not
equivalent [20].

C. New analysis on penalized £y minimization problems

To prove that a problem T is NP-hard, one must estab-
lish a polynomial time reduction (briefly called reduction
hereafter) from some known NP-hard or NP-complete
problem to T [18]. Roughly speaking, the reduction from
a problem T1 to another problem T2 implies that T1 is not
harder than T2. Therefore, if there exists a reduction from
T1 to T2 and if T1 is NP-hard, T2 must be NP-hard too.
The NP-hardness proofs in [2] and [3] use this principle.
As an adaptation of Natarajan’s construction, we prove the
NP-hardness of (£ P) using the same principle as follows.

Theorem II.1. Problem (£yP) is NP-hard for 0 < A < 3.

The proof is by a reduction from the known NP-
complete problem X3C to (¢yP). The proof contains three
steps: (1) Construct an instance of ({yP) from a given
instance of X3C; (2) Construct a solution of (¢yP) from
a solution of X3C; (3) Construct a solution of X3C from
a solution of ({yP).

1) Construction of an instance of (Lo P) from a given
instance of X3C: Given an instance of X3C: S =
{s1, 82, ..., Sm } is a set of m elements. C' is a collection
of n triplets ¢j, 1 < j < n. Without loss of generality we



can assume that m is a multiple of 3 since otherwise there
is trivially no exact cover so no solution of X3C.

We now construct an instance of ({yP). Let y =
[1,1,...,1]T € R™, Let A = (aij)lgigm,lgjgn where
a;; = 11if s; € ¢; and a;; = 0 otherwise. Let A € Q,
0 <A <3. Let

F(z) = |ly — A|3 + A|z[lo. 3)

2) Construction of a solution of (boP) from a solu-
tion of X3C: Assume that there is a subcollection of
disjoint triplets C' which exactly covers S. Let * =
[z}, 25, ..., x5]T where 2} = 1if ¢; € C and i =0
otherwise. We will prove that * is a solution of (¢yP).

Since C' exactly covers S, |C| = m/3 and y = Ax*.
Thus, ||z*||o = m/3 and

Flz*) =0+ )\% = )\%.

Suppose that there exists & such that

F(z) < F(z*) = A2

3 “4)

Let us show that this leads to a contradiction.

Since F (&) > A||Z||o, from (4) we have ||Z|lo < m/3.
Therefore, we can rewrite ||Z|q = m/3 — ¢ for some
g € N, 1 < g < m/3. Note that Az has m entries.
Since the number of non-zero entries of AZ identifies with
the number of elements s; recovered by the subcollection
corresponding to &, this number cannot exceed 3||Z||o =
m — 3q. As a result, the number of zero entries of AZ
must be between 3¢ and m. Since y is the all-one vector,
y — AZ has at least 3¢ entries valued 1, which implies

ly — Az||3 > 3q. Q)

Hence,

F(z) 23q+)\(%—q) :AT+(3—A)q>A%, 6)

3
which contradicts (4). Therefore, x* is a solution of (¢y P).

3) Construction of a solution of X3C from a solution
of (Lo P): Assume that * is a solution of (¢ P). We will
consider four cases as follows.

a) Case ||z*||o > m/3: We deduce that X3C has no
solution. Indeed, assume that C is an exact cover for S.
Define ® = [z, %2, ..., z,]T where z; = 1 if ¢; € C and
x; = 0 otherwise. Then we have

m * *
F@) =A% < Nz [o < Fa")

which contradicts the fact that x* is a solution of ({yP).
b) Case ||x*|lo < m/3: We deduce that X3C has
no solution. Indeed, assume that C' is an exact cover foAr
S. Let ¢ = [x1,%9,...,x,]7 where z; = 1if ¢; € C
and z; = 0 otherwise. Then we have F(x) = A Since
llz*|lo < m/3, we can write ||x*|o = m/3 — ¢ for some
g € Nand 1 < ¢ < m/3. Similar to (6), we have F(z*) >
AL Since F(x) = A, we obtain F(z*) > F(x) which
contradicts the fact thaﬁ x* is a solution of ({yP).

¢) Case where ||x*||o0 = m/3 and y # Axz*: We
deduce that X3C has no solution. Indeed, assume that C
is an exact cover for S. Define © = [71, 2, ..., 2,]T where
z;=1if ¢; € C and z; = 0 otherwise. Then we have

m * * *
F(@) = A3 <lly = Az"[5 + N|2"[lo = F (")

which contradicts the fact that * is a solution of (¢yP).

d) Case where ||z*|o = m/3 and y = Az*: Let C
be the collection of triplets c¢; such that the 4t entry of
x* is non-zero. Obviously, C is an exact cover for S so
a solution of X3C.

Thus Theorem II.1 is proved.

It is notable that the proof above is also valid when
F(z) = |ly — Az[]) + A|z[|o for any p > 1. Indeed,
one only needs to check whether (5) still holds when the
¢> norm is replaced by the ¢, norm with p > 1. This
is the case since y — AZ has at least 3¢ entries equal
to 1. Therefore, we have the following generalization of
Theorem II.1.

Theorem I1.2. Problem min, ||y —Az||)+A||z||o is NP-
hard for p > 1 and 0 < \ < 3.

ITI. HARDNESS OF NON-NEGATIVE {o MINIMIZATION
PROBLEMS

The NP-hardness of non-negative ¢y minimization prob-
lems is a consequence of NP-hard proofs of (¢,C) [2],
(4oC") [3] and ({gP) (Theorem IL1). Indeed, all these
proofs consist in a reduction from X3C and the solu-
tion that established equivalence is binary. Therefore, the
additional non-negativity constraints do not change the
validity of these proofs. In other words, one can repeat
the same proofs as in [2,3] and that of Theorem II.1 for
the corresponding non-negative ¢y minimization problems
(boC+), (byC'+) and (£oP+). Another way to prove the
NP-hardness of non-negative £, minimization problems is
by a reduction from the corresponding ¢y minimization
problems which are known to be NP-hard. In this reduc-
tion, the instance of non-negative problems is defined by

~ 2+

y=vy, A=[A-4], z= L”}

where £+ = max{x,0}, = = max{—x, 0}. Naturally,

by this construction, one gets & > 0, ||Z||o = ||x||o and

A% = Ax. The proofs (skipped for brevity) contain three
steps similar to that of Theorem II.1.

Therefore, we can state the following theorem without

proof.

Theorem IIL.1. ({,C+), (boC'+) are NP-hard. The same
for (g P+) with 0 < A < 3.

In the same spirit and using the same argument as at the
end of Section II-C one can directly extend Theorem II.2
to the non-negative setting.

Theorem IIL.2. Problem ming>o ||y — Az||) + A|z|lo is
NP-hard for p > 1 and 0 < X < 3.



IV. CONCLUSION

NP-hardness of penalized ¢y minimization problems
cannot be deduced from previous complexity analyses,
as stated in [4,5]. Here, we introduced a new proof of
NP-hardness of penalized ¢y minimization problems when
the regularization parameter A is smaller than 3, by an
adaptation of Natarajan’s construction [2], while the case
A > 3 is still open. Besides, we showed that the /g
minimization problems with non-negative constraints are
also NP-hard.

This work can be extended in several directions. For
instance, researchers interested in what makes NP-hard
problems even harder might be interested in the strong NP-
hardness of the aforementioned optimization problems. As
it is widely believed that X3C is strongly NP-complete,
one might easily deduce the strong NP-hardness of (¢,C),
(¢oC") and other problems which are reduced from X3C.
However, to the best of our knowledge, X3C is only proved
to be NP-complete [17, pp.53,221] and the strong NP-
completeness has not been rigorously shown yet. There-
fore, we believe that the question of strong NP-hardness
of (non-negative) ¢, minimization problems is not trivial
and needs more work in future.

Besides, as (non-negative) £, minimization problems are
NP-hard, it would be interesting to know if the associated
decision problems are in NP (so being NP-complete). Let
us consider the decision problem associated with (£4C'):
given y € Q™, A € Q™*™, a positive rational number €
and a positive integer K, does there exist £ € R" such that
|ly — Az|]z < € and ||x|o < K? This decision problem
should be in NP since if one can guess a rational solution
x, it can be verified in polynomial time if ||y — Az|]s <€
and ||| < K. Similarly, we conjecture that the decision
version of other optimization problems mentioned in the
paper are in NP as well.

Another perspective is the approximability of aforemen-
tioned NP-hard problems. The hardness of approximating
(lpC) was discussed in [21, 22]. It was shown that approxi-
mating ({oC) to within a factor of (1—a)In(n), 0 < a < 1
is NP-hard [22]. Examining whether similar results can be
obtained on other NP-hard problems presented in the paper
would require more involved theoretical analysis, which is
left for future work.
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