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Abstract—Sparse approximation arises in many appli-
cations and often leads to a constrained or penalized `0
minimization problem, which was proved to be NP-hard.
This paper proposes a revision of existing analyses of NP-
hardness of the penalized `0 problem and it introduces a
new proof adapted from Natarajan’s construction (1995).
Moreover, we prove that `0 minimization problems with non-
negativity constraints are also NP-hard.

I. INTRODUCTION

Sparse approximation appears in a wide range of appli-
cations, especially in signal processing, image processing
and compressed sensing [1]. Given a signal data y ∈ Rm
and a dictionary A of size m×n, the aim is to find a signal
x ∈ Rn that gives the best approximation y ≈ Ax and has
the fewest non-zero coefficients (i.e., sparsest solution).
This task leads to solving one of the following constrained
or penalized `0 minimization problems:

min
‖y−Ax‖2≤ε

‖x‖0 (`0C)

min
‖x‖0≤K

‖y −Ax‖22 (`0C ′)

min
x

‖y −Ax‖22 + λ‖x‖0 (`0P )

in which ε, K and λ are positive quantities related to the
noise standard deviation, the sparsity level and regulariza-
tion strength, respectively. Letters C and P respectively
indicate that the problem is constrained or penalized.
Depending on application, the appropriate statement will
be addressed. It is noteworthy that n and K often depend
on m when one considers the size of problem. (`0C) and
(`0C ′) are well known to be NP-hard [2, 3]. The NP-
hardness of (`0P ) was claimed to be a particular case of
more general complexity analyses in [4, 5]. However, we
point out that these complexity analyses do not rigorously
apply to (`0P ) as claimed. In this paper, we justify the
complexity analyses in [4, 5] do not apply to problem
(`0P ), and we provide a new proof for the NP-hardness
of (`0P ) adapted from Natarajan’s construction [2].

In several applications such as geoscience and remote
sensing [6, 7], audio [8], chemometrics [9] and computed
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tomography [10], the signal or image of interest is non-
negative. In such contexts, one often addresses a mini-
mization problem with both sparsity and non-negativity
constraints [10–12]. Adding non-negativity constraints to
`0 minimization problems yields the following problems:

min
x≥0,‖y−Ax‖2≤ε

‖x‖0 (`0C+)

min
x≥0,‖x‖0≤K

‖y −Ax‖22 (`0C ′+)

min
x≥0

‖y −Ax‖22 + λ‖x‖0 (`0P+)

Several papers address non-negative `0 minimization prob-
lems in the literature (see, e.g., [13–16]). However, to the
best of our knowledge, the complexity of these problems
has not been addressed yet, the question of their NP-
hardness being still open. Here we show that these prob-
lems are NP-hard and the proof can be derived from the
NP-hardness of `0 minimization problems.

The rest of paper is organized as follows. In Section II,
we discuss the issues related to NP-hardness of (`0P ) in
existing analyses and we present our proof. In Section III,
we discuss about the NP-hardness of non-negative `0
minimization problems. We draw some conclusions in
Section IV.

II. HARDNESS OF `0 MINIMIZATION PROBLEMS

A. Background on constrained `0 minimization problems

Let us recall that an NP-complete problem is a prob-
lem in NP to which any other problem in NP can be
reduced in polynomial time. Thus NP-complete problems
are identified as the hardest problems in NP. An NP-
complete problem is strongly NP-complete if it remains
NP-complete when all of its numerical parameters are
bounded by a polynomial in the length of the input.
NP-hard problems are at least as hard as NP-complete
problems. However, NP-hard problems do not need to
be in NP and do not need to be decision problems.
Formally, a problem is NP-hard (respectively, strongly
NP-hard) if a NP-complete (respectively, strongly NP-
complete) problem can be reduced in polynomial time to
it. The reader is referred to [17, 18] for more information
on this topic.
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In the literature, problem (`0C), called SAS in [2],
is well known to be NP-hard [2, Theorem 1]. The NP-
hardness of (`0C) is a valuable extension of an earlier
result: the problem of minimum weight solution to linear
equations (equivalent to (`0C) with ε = 0) is NP-hard [17,
p. 246]. Davis et al. proved that (`0C ′), called M -optimal
approximation in [3], is NP-hard for any K < m [3,
Theorem 2.1]. Both analyses of Natarajan and Davis were
made by a polynomial time reduction from the “exact
cover by 3-sets” problem1 which is known to be NP-
complete [17, p. 221].

B. Existing analyses on penalized `0 minimization

In [4, 5], the NP-hardness of (`0P ) is deduced as
a particular case of more general complexity analyses.
However, it turns out that the latter do not apply to
(`0P ), as explained hereafter. Chen et al. [4] address the
unconstrained `q-`p minimization problem, defined by:

min
x
‖y −Ax‖qq + λ‖x‖pp (`q-`p)

where λ > 0, q ≥ 1 and 0 ≤ p < 1. The authors showed
that problem (`q-`p) is NP-hard with any λ > 0, q ≥ 1
and 0 ≤ p < 1 [4, Theorem 3]. Obviously, (`0P ) is the
case where q = 2 and p = 0. The proof was done by
i) introducing an invertible transformation which scales
any instance of problem (`q-`p) to the problem (`q-`p)
with λ = 1/2, and ii) establishing a polynomial time
reduction from the partition problem which is known to be
NP-complete [17] to the problem (`q-`p) with λ = 1/2.
In other words, they showed that problem (`q-`p) with
λ = 1/2 is NP-hard and, because there exists an invertible
transformation from any problem (`q-`p) to the one with
λ = 1/2, every problem (`q-`p) is NP-hard. Similarly, they
showed that (`q-`p) is strongly NP-hard [4, Theorem 5] by
a reduction from the 3-partition problem which is known
to be strongly NP-hard [17]. The invertible transform used
in [4] is defined by:

x̃ = (2λ)1/px, Ã = (2λ)−1/pA. (1)

Unfortunately, (1) is not well-defined when p = 0. There-
fore, [4, Theorems 3 and 5] do not apply to (`0P ) when
λ 6= 1/2.

Using a different approach, Huo and Chen’s paper [5]
addresses the penalized least-squares problem defined by:

min
x
‖y −Ax‖22 + λ

n∑
i=1

φ(|xi|), (PLS)

where φ is a penalty function mapping non-negative values
to non-negative values. The authors showed that (PLS) is
NP-hard if the penalty function φ satisfies the following
four conditions [5, Theorem 3.1]:
C1. φ(0) = 0 and ∀ 0 ≤ τ1 < τ2, φ(τ1) ≤ φ(τ2).
C2. There exists τ0 > 0 and a constant d > 0 such that

φ(τ) ≥ φ(τ0)− d(τ0 − τ)2

1The latter problem, denoted by X3C in [2, 17], is stated as follows:
Given a set S and a collection C of 3-element subsets of S (called
triplets), is there a subcollection of disjoint triplets that exactly covers
S?

for every 0 ≤ τ < τ0.
C3. For the aforementioned τ0, if τ1, τ2 < τ0 then

φ(τ1) + φ(τ2) ≥ φ(τ1 + τ2).

C4. For every 0 ≤ τ < τ0,

φ(τ) + φ(τ0 − τ) > φ(τ0). (2)

The proof of [5, Theorem 3.1] is by a reduction from
the NP-complete problem X3C to the decision version of
(PLS); this leads to the NP-completeness of the decision
version of (PLS) and so the NP-hardness of (PLS) [5,
Appendix 1]. The authors claimed that the `0 penalty
function satisfies conditions C1-C4 for τ0 = d = 1.
Therefore, the (PLS) problem with the `0 penalty function
is NP-hard [5, Corollary 3.2]. Unfortunately, it turns out
that the `0 penalty does not fulfill condition C4 as claimed.
Indeed, for τ = 0 the strict inequality (2) becomes
φ(0) > 0. Besides, in the proof [5, Appendix 1], the inputs
of the decision problem are not guaranteed to have rational
values. This might also violate the polynomiality of the
reduction. Therefore, [5, Theorem 3.1] does not apply to
(`0P ).

In [5], the authors also mention an alternate proof of
NP-hardness of (`0P ) from Huo and Ni’s earlier paper
[19] as a special case of their results. In this proof [19,
Appendix A.1], the relation between (`0P ) and (`0C) is es-
tablished using the principle of Lagrange multiplier. More
precisely, the authors introduce an instance of (`0C) in
which ε is defined from the minimizer of (`0P ) and argue
that solving (`0P ) is equivalent to solving the mentioned
instance of (`0C), which is known to be NP-hard [2].
There are a number of issues in the NP-hardness proof in
[19]. For instance, the proposed transformation between
(`0P ) and (`0C) is not a polynomial time reduction.
Besides, it is well known that (`0P ) and (`0C) are not
equivalent [20].

C. New analysis on penalized `0 minimization problems

To prove that a problem T is NP-hard, one must estab-
lish a polynomial time reduction (briefly called reduction
hereafter) from some known NP-hard or NP-complete
problem to T [18]. Roughly speaking, the reduction from
a problem T1 to another problem T2 implies that T1 is not
harder than T2. Therefore, if there exists a reduction from
T1 to T2 and if T1 is NP-hard, T2 must be NP-hard too.
The NP-hardness proofs in [2] and [3] use this principle.
As an adaptation of Natarajan’s construction, we prove the
NP-hardness of (`0P ) using the same principle as follows.

Theorem II.1. Problem (`0P ) is NP-hard for 0 < λ < 3.

The proof is by a reduction from the known NP-
complete problem X3C to (`0P ). The proof contains three
steps: (1) Construct an instance of (`0P ) from a given
instance of X3C; (2) Construct a solution of (`0P ) from
a solution of X3C; (3) Construct a solution of X3C from
a solution of (`0P ).

1) Construction of an instance of (`0P ) from a given
instance of X3C: Given an instance of X3C: S =
{s1, s2, ..., sm} is a set of m elements. C is a collection
of n triplets cj , 1 ≤ j ≤ n. Without loss of generality we
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can assume that m is a multiple of 3 since otherwise there
is trivially no exact cover so no solution of X3C.

We now construct an instance of (`0P ). Let y =
[1, 1, ..., 1]T ∈ Rm. Let A = (aij)1≤i≤m,1≤j≤n where
aij = 1 if si ∈ cj and aij = 0 otherwise. Let λ ∈ Q,
0 < λ < 3. Let

F (x) := ‖y −Ax‖22 + λ‖x‖0. (3)

2) Construction of a solution of (`0P ) from a solu-
tion of X3C: Assume that there is a subcollection of
disjoint triplets Ĉ which exactly covers S. Let x∗ =
[x∗1, x

∗
2, ..., x

∗
n]T where x∗j = 1 if cj ∈ Ĉ and x∗j = 0

otherwise. We will prove that x∗ is a solution of (`0P ).
Since Ĉ exactly covers S, |Ĉ| = m/3 and y = Ax∗.

Thus, ‖x∗‖0 = m/3 and

F (x∗) = 0 + λ
m

3
= λ

m

3
.

Suppose that there exists x̄ such that

F (x̄) < F (x∗) = λ
m

3
. (4)

Let us show that this leads to a contradiction.
Since F (x̄) ≥ λ‖x̄‖0, from (4) we have ‖x̄‖0 < m/3.

Therefore, we can rewrite ‖x̄‖0 = m/3 − q for some
q ∈ N, 1 ≤ q < m/3. Note that Ax̄ has m entries.
Since the number of non-zero entries of Ax̄ identifies with
the number of elements si recovered by the subcollection
corresponding to x̄, this number cannot exceed 3‖x̄‖0 =
m − 3q. As a result, the number of zero entries of Ax̄
must be between 3q and m. Since y is the all-one vector,
y −Ax̄ has at least 3q entries valued 1, which implies

‖y −Ax̄‖22 ≥ 3q. (5)

Hence,

F (x̄) ≥ 3q+ λ
(m

3
− q
)

= λ
m

3
+ (3− λ)q > λ

m

3
, (6)

which contradicts (4). Therefore, x∗ is a solution of (`0P ).
3) Construction of a solution of X3C from a solution

of (`0P ): Assume that x∗ is a solution of (`0P ). We will
consider four cases as follows.

a) Case ‖x∗‖0 > m/3: We deduce that X3C has no
solution. Indeed, assume that Ĉ is an exact cover for S.
Define x = [x1, x2, ..., xn]T where xj = 1 if cj ∈ Ĉ and
xi = 0 otherwise. Then we have

F (x) = λ
m

3
< λ‖x∗‖0 ≤ F (x∗)

which contradicts the fact that x∗ is a solution of (`0P ).
b) Case ‖x∗‖0 < m/3: We deduce that X3C has

no solution. Indeed, assume that Ĉ is an exact cover for
S. Let x = [x1, x2, ..., xn]T where xj = 1 if cj ∈ Ĉ

and xi = 0 otherwise. Then we have F (x) = λ
m

3
. Since

‖x∗‖0 < m/3, we can write ‖x∗‖0 = m/3− q for some
q ∈ N and 1 ≤ q < m/3. Similar to (6), we have F (x∗) >

λ
m

3
. Since F (x) = λ

m

3
, we obtain F (x∗) > F (x) which

contradicts the fact that x∗ is a solution of (`0P ).

c) Case where ‖x∗‖0 = m/3 and y 6= Ax∗: We
deduce that X3C has no solution. Indeed, assume that Ĉ
is an exact cover for S. Define x = [x1, x2, ..., xn]T where
xj = 1 if cj ∈ Ĉ and xi = 0 otherwise. Then we have

F (x) = λ
m

3
< ‖y −Ax∗‖22 + λ‖x∗‖0 = F (x∗)

which contradicts the fact that x∗ is a solution of (`0P ).
d) Case where ‖x∗‖0 = m/3 and y = Ax∗: Let Ĉ

be the collection of triplets cj such that the jth entry of
x∗ is non-zero. Obviously, Ĉ is an exact cover for S so
a solution of X3C.

Thus Theorem II.1 is proved.
It is notable that the proof above is also valid when

F (x) := ‖y − Ax‖pp + λ‖x‖0 for any p ≥ 1. Indeed,
one only needs to check whether (5) still holds when the
`2 norm is replaced by the `p norm with p ≥ 1. This
is the case since y − Ax̄ has at least 3q entries equal
to 1. Therefore, we have the following generalization of
Theorem II.1.

Theorem II.2. Problem minx ‖y−Ax‖pp+λ‖x‖0 is NP-
hard for p ≥ 1 and 0 < λ < 3.

III. HARDNESS OF NON-NEGATIVE `0 MINIMIZATION
PROBLEMS

The NP-hardness of non-negative `0 minimization prob-
lems is a consequence of NP-hard proofs of (`0C) [2],
(`0C ′) [3] and (`0P ) (Theorem II.1). Indeed, all these
proofs consist in a reduction from X3C and the solu-
tion that established equivalence is binary. Therefore, the
additional non-negativity constraints do not change the
validity of these proofs. In other words, one can repeat
the same proofs as in [2, 3] and that of Theorem II.1 for
the corresponding non-negative `0 minimization problems
(`0C+), (`0C ′+) and (`0P+). Another way to prove the
NP-hardness of non-negative `0 minimization problems is
by a reduction from the corresponding `0 minimization
problems which are known to be NP-hard. In this reduc-
tion, the instance of non-negative problems is defined by

ỹ = y, Ã = [A,−A], x̃ =

[
x+

x−

]
where x+ = max{x,0}, x− = max{−x,0}. Naturally,
by this construction, one gets x̃ ≥ 0, ‖x̃‖0 = ‖x‖0 and
Ãx̃ = Ax. The proofs (skipped for brevity) contain three
steps similar to that of Theorem II.1.

Therefore, we can state the following theorem without
proof.

Theorem III.1. (`0C+), (`0C ′+) are NP-hard. The same
for (`0P+) with 0 < λ < 3.

In the same spirit and using the same argument as at the
end of Section II-C one can directly extend Theorem II.2
to the non-negative setting.

Theorem III.2. Problem minx≥0 ‖y−Ax‖pp +λ‖x‖0 is
NP-hard for p ≥ 1 and 0 < λ < 3.
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IV. CONCLUSION

NP-hardness of penalized `0 minimization problems
cannot be deduced from previous complexity analyses,
as stated in [4, 5]. Here, we introduced a new proof of
NP-hardness of penalized `0 minimization problems when
the regularization parameter λ is smaller than 3, by an
adaptation of Natarajan’s construction [2], while the case
λ ≥ 3 is still open. Besides, we showed that the `0
minimization problems with non-negative constraints are
also NP-hard.

This work can be extended in several directions. For
instance, researchers interested in what makes NP-hard
problems even harder might be interested in the strong NP-
hardness of the aforementioned optimization problems. As
it is widely believed that X3C is strongly NP-complete,
one might easily deduce the strong NP-hardness of (`0C),
(`0C ′) and other problems which are reduced from X3C.
However, to the best of our knowledge, X3C is only proved
to be NP-complete [17, pp. 53, 221] and the strong NP-
completeness has not been rigorously shown yet. There-
fore, we believe that the question of strong NP-hardness
of (non-negative) `0 minimization problems is not trivial
and needs more work in future.

Besides, as (non-negative) `0 minimization problems are
NP-hard, it would be interesting to know if the associated
decision problems are in NP (so being NP-complete). Let
us consider the decision problem associated with (`0C):
given y ∈ Qm, A ∈ Qm×n, a positive rational number ε
and a positive integer K, does there exist x ∈ Rn such that
‖y − Ax‖2 ≤ ε and ‖x‖0 ≤ K? This decision problem
should be in NP since if one can guess a rational solution
x, it can be verified in polynomial time if ‖y−Ax‖2 ≤ ε
and ‖x‖0 ≤ K. Similarly, we conjecture that the decision
version of other optimization problems mentioned in the
paper are in NP as well.

Another perspective is the approximability of aforemen-
tioned NP-hard problems. The hardness of approximating
(`0C) was discussed in [21, 22]. It was shown that approxi-
mating (`0C) to within a factor of (1−α) ln(n), 0 < α < 1
is NP-hard [22]. Examining whether similar results can be
obtained on other NP-hard problems presented in the paper
would require more involved theoretical analysis, which is
left for future work.
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