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Università di Genova, Italy

Email: monti.m@dima.unige.it

Abstract—Following the version of Helgason’s approach con-
sidered in [1] based on intertwining properties for irreducible
quasi-regular representations, we construct the Radon transform
associated to the group of hyperbolic motions of the plane and
we obtain a unitarization result and an inversion formula for this
Radon transform.

I. INTRODUCTION

It is shown in [1] how representation theory allows treating
in a general and unified way the problem of inverting the
Radon transform introduced by Helgason [2] associated to
dual pairs (G/K,G/H) of homogeneous spaces of a locally
compact group G, where K and H are closed subgroups of G.

Precisely, under some technical assumptions, if the quasi-
regular representations of G acting on L2(G/K) and
L2(G/H) are irreducible, then the Radon transform, up to
a composition with a suitable pseudo-differential operator,
can be extended to a unitary operator intertwining the two
representations, see Theorem 1. Such unitarization problem
for the Radon transform was already addressed and solved
by Helgason in the context of symmetric spaces [3] which,
however, does not recover the framework considered in [1].
If, in addition, the representations are square integrable, an
inversion formula for the Radon transform based on the voice
transform associated to these representations is given.

The above framework collects various types of Radon
transforms related to groups of interest in applications. In [1]
are illustrated the examples where G is either the similitude
group of the plane or the standard shearlet group to which
correspond the classical polar Radon transform [4] and the
affine Radon transform [5], respectively. Both these groups
appear in the classification of four dimensional reproducing
subgroups of Sp(2,R) presented in [6] together with the group
of hyperbolic motions of the plane.

In this paper we study the Radon transform associated to this
group and we give a unitarization result and an inversion for-
mula for this Radon transform based on intertwining properties
for irreducible quasi-regular representations, thereby enlarging
the list of examples contained in [1]. Furthermore, this Radon
transform is seen to be associated to the classical problem of
limited angle tomography, where one wants to reconstruct an
unknown signal from its integrals over all lines in a limited
range of directions.

The paper is organised as it follows. In Section II we recall
the notion of Radon transform associated to dual homogeneous

spaces and in Section III we present the main results in [1].
Finally, in Section IV we introduce the group of hyperbolic
motions and we give an inversion formula for the related
Radon transform.

II. RADON TRANSFORMS BETWEEN DUAL HOMOGENEOUS
SPACES: AN OVERVIEW

We briefly introduce the notation. We set R∗ = R\{0}. The
Euclidean norm of a vector v ∈ Rd is denoted by |v| and its
scalar product with w ∈ Rd by v ·w. For any p ∈ [1,+∞] we
denote by Lp(Rd) the Banach space of functions f : Rd → C
that are p-integrable with respect to the Lebesgue measure dx
and, if p = 2, the corresponding scalar product and norm are
〈·, ·〉 and ‖ · ‖, respectively. The Fourier transform is denoted
by F both on L2(Rd) and on L1(Rd), where it is defined by

Ff(ω) =

∫
Rd

f(x)e−2πi ω·xdx, f ∈ L1(Rd).

Let G be a locally compact group, we denote by L2(G) the
Hilbert space of square-integrable functions with respect to a
left Haar measure on G. If X is a transitive G-space with
origin x0 and if g[x] denotes the action of G on X , a Borel
measure µ of X is relatively invariant if there exists a positive
character α of G such that for any measurable set E ⊂ X
and g ∈ G it holds µ(g[E]) = α(g)µ(E). Furthermore, a
Borel section is a measurable map s : X → G satisfying
s(x)[x0] = x and s(x0) = e, with e the neutral element of G;
a Borel section always exists since G is second countable [7,
Theorem 5.11]. If A ∈Md(R), the vector space of square d×d
matrices with real entries, tA denotes its transpose. Finally,
we denote the (real) general linear group of size d × d by
GL(d,R).

A. Dual homogeneous spaces

We consider two transitive G-spaces X and Ξ, where the
actions on x ∈ X and ξ ∈ Ξ are

(g, x) 7→ g[x], (g, ξ) 7→ g. ξ.

We fix x0 ∈ X and ξ0 ∈ Ξ and we denote by K and H
the corresponding stability subgroups, so that X ' G/K and
Ξ ' G/H .

We assume that X and Ξ admit relatively invariant measures
dx and dξ with positive characters α : G → (0,+∞) and
β : G→ (0,+∞), respectively.



The space X is meant to describe the ambient in which the
functions to be analyzed live (e.g. the Euclidean plane), while
the space Ξ is meant to parametrize the set of submanifolds
of X over which one wants to integrate functions (e.g. lines
in the plane).

We define the transitive H-space

ξ̂0 = H[x0] ⊂ X

and we assume that it carries a relatively H-invariant Radon
measure dm0 with positive character γ : H → (0,+∞).

For technical reasons, we suppose that there exists a Borel
section σ : Ξ→ G such that

(g, ξ) 7→ γ
(
σ(ξ)−1gσ(g−1. ξ)

)
extends to a positive character of G independent of ξ and we
fix it. Observe that the above assumption is implied by the
stronger condition γ(σ(ξ)) = 1 for any ξ ∈ Ξ. Finally, we put

ξ̂ = σ(ξ)[ξ̂0] ⊂ X, (1)

for any ξ ∈ Ξ, which is a closed subset by [2, Lemma 1.1]
and we require that the map ξ 7→ ξ̂ is injective to avoid an
overlapping parametrisation of the submanifolds of X over
which one wants to integrate functions.

This construction can be read in the context of homogeneous
spaces in duality in the sense of Helgason [2, Chapter II]. In
Helgason’s approach all the spaces X , Ξ and ξ0 are required
to carry invariant measures instead of relatively invariant mea-
sures. Our weaker assumptions allow for considering a wider
variety of cases, such as the similitude group, the standard
shearlet group [1] and the group of hyperbolic motions of the
plane presented in Section IV.

B. The representations

The group G acts unitarily on L2(X,dx) and L2(Ξ,dξ) via
the quasi-regular representations defined by

π(g)f(x) = α(g)−1/2f(g−1[x])

and
π̂(g)F (ξ) = β(g)−1/2F (g−1. ξ).

We assume that both π and π̂ are irreducible.

C. Radon transform between dual homogeneous spaces

Mimicking Helgason’s approach [2], we define the Radon
transform of f associated to the homogeneous spaces X and
Ξ as the map Rf : Ξ→ C given by

Rf(ξ) =

∫
ξ̂

f(x)dmξ(x), (2)

where the measure dmξ on ξ̂ is defined as the push-forward
of dm0 using the Borel section σ. Note that this depends
intrinsically on the choices of dm0 and σ, and not only on
the subset of integration ξ̂.

For our purposes, we assume that there exists a non-trivial
π-invariant subspace A of L2(X,dx) such that Rf is well
defined for all f ∈ A and the Radon transform R from A
into L2(Ξ,dξ) is closable.

III. GENERAL RESULTS

In this section we recall the main results presented in [1].
The first subsection is devoted to the unitarization problem and
the second one to the generalized Radon inversion problem.

A. Unitarization

We recall the main theorem in [1] which may be stated as
follows.

Theorem 1. The Radon transform R : A → L2(Ξ,dξ) is a
densely defined operator which intertwines the representations
π and π̂ up to a positive character χ of G, namely

π̂(g)Rπ(g)−1 = χ(g)R, (3)

for all g ∈ G, where

χ(g) = α(g)1/2β(g)−1/2γ(gσ(g−1.ξ0))−1.

Furthermore, there exists a unique densely defined positive
selfadjoint operator I in L2(Ξ,dξ) with the property

π̂(g)Iπ̂(g)−1 = χ(g)−1I (4)

such that the composite operator IR : A → L2(Ξ,dξ) extends
to a unitary operatorQ : L2(X,dx)→ L2(Ξ,dξ) intertwining
π and π̂, i.e.

π̂(g)Qπ(g)−1 = Q, g ∈ G. (5)

We refer to [1] for a more detailed formulation of the above
theorem and for its proof. The above result is a generalization
of Helgason’s theorem on the unitarization of the polar Radon
transform [2, Theorem 4.1].

B. Inversion formulae

From now on, we require that π is square-integrable. We
recall that, under this assumption, there exists ψ ∈ L2(X,dx)
such that the voice transform Vψ

(Vψf)(g) = 〈f, π(g)ψ〉, g ∈ G,

is an isometry from L2(X,dx) into L2(G) and we have the
weakly-convergent reproducing formula

f =

∫
G

(Vψf)(g)π(g)ψ dµ(g), (6)

where µ is a Haar measure of G. Since Q is unitary and
satisfies (5), the voice transform reads

(Vψf)(g) = 〈Qf, π̂(g)Qψ〉, g ∈ G. (7)

Moreover, if we can choose ψ in such a way that Qψ is in
the domain of the operator I, exploiting property (4) and the
selfadjointness of I, we have

(Vψf)(g) = χ(g)〈Rf, π̂(g)Ψ〉, (8)

for all f ∈ A, and the reconstruction formula reads

f =

∫
G

χ(g)〈Rf, π̂(g)Ψ〉π(g)ψ dµ(g), (9)



where Ψ = IQψ. Equation (9) gives an inversion formula for
the Radon transform based on the voice transform associated
to the square-integrable representation π, thereby opening the
way to new methods for the generalized Radon inversion
problem.

IV. THE RADON TRANSFORM FOR HYPERBOLIC MOTIONS

In this section we show that the general results of Section III
may be applied to the Radon transform associated to the group
of hyperbolic motions of the plane.

A. The homogeneous spaces

We consider the semidirect product G = R2 o K, with
K = {aAsΩε ∈ GL(2,R) : a ∈ R∗, s ∈ R, ε ∈ {−1, 1}}
where

As =

[
cosh s sinh s
sinh s cosh s

]
, Ω−1 =

[
0 1
1 0

]
and Ω1 is the identity matrix. We denote by C2 the multiplica-
tive group {−1, 1}. Under the identification K ' R×R∗×C2,
we write (b, s, a, ε) for the elements in G, so that the group
law becomes

(b, s, a, ε)(b′, s′, a′, ε′) = (b+ aAsΩεb
′, s+ s′, aa′, ε ε′).

A left Haar measure of G is dµ(b, s, a, ε) = |a|−3dbdsdadε,
where db, ds and da are the Lebesgue measures on R2, R and
R∗, respectively and dε is the counting measure on C2.

The group G acts transitively on X = R2 by the canonical
action

(b, s, a, ε)[x] = b+ aAsΩεx, (b, s, a, ε) ∈ G, x ∈ X. (10)

The isotropy at the origin x0 = 0 is the closed subgroup
{(0, k) : k ∈ K} ' K, so that X ' G/K and the
Lebesgue measure dx on X is a relatively G-invariant measure
with positive character α(b, s, a, ε) = |a|2. It is possible to
parametrize lines in the plane, except those with slope -1 or
1, by the space of parameters Ξ = C2×R×R as in Figure 1.
The group G is a subgroup of affine transformations of the
plane and thus maps lines into lines. Its action on this set of
lines is given by the formula

(b, s, a, ε)−1.(η, u, t)=

(
ε η, u+ s,

t− Ωηw(u) · b
a

)
,

where w(u) = t(coshu, sinhu), and is easily seen to be
transitive. The isotropy at ξ0 = (1, 0, 0) is

H = {((0, b2), 0, a, 1) : b2 ∈ R, a ∈ R∗}.

Thus, Ξ ' G/H . An immediate calculation gives that the
measure dξ = dηdudt, where du and dt are the Lebesgue
measures on R and dη is the counting measure on C2, is a
G-relatively invariant measure on Ξ with positive character
β(b, s, a, ε) = |a|.

Consider now the section σ : Ξ→ G defined by

σ(η, u, t) = (tΩηw(−u),−u, 1, η).

x

y

0 ( t
cosh u

, 0)

(0, t
cosh u

)

Ω1w(u)

Ω−1w(u)

x · Ω1w(u) = t

x · Ω−1w(u) = t

Fig. 1. The lines in R2 except those with slope 1 or -1 are parametrized by
triples (η, u, t) ∈ Ξ = C2 × R × R. The vector u parametrizes the slope.
The choice η = 1 (η = −1) corresponds to slope > 1 (< 1) and fixes as
reference line the x−axis (y-axis). Then t parametrizes the intersection of the
line with the reference axis.

By direct computation

ξ̂0 = H[x0] = {(0, b2) : b2 ∈ R} ' R.

It is immediate to see that the Lebesgue measure db2
on ξ̂0 is a relatively H-invariant measure with character
γ((0, b2), 0, a, 1) = |a| and that γ(σ(η, u, t)) = 1 for all
(η, u, t) ∈ Ξ, so that (g, ξ) 7→ γ

(
σ(ξ)−1gσ(g−1. ξ)

)
extends

to a positive character of G independent of ξ. Further, we have
that

̂(η, u, t) = σ(η, u, t)[ξ̂0] = {x ∈ R2 : x · Ωηw(u) = t},

which is the set of all points laying on the line of equation
x · Ωηw(u) = t. Therefore, the submanifolds over which we
integrate functions are lines in R2, except to the ones with
slope -1 or 1, and are parametrized by Ξ through the injective
map (η, u, t) 7→ ̂(η, u, t).

B. The representations

The group G acts on L2(X) by means of the unitary
representation π defined by

π(b, s, a, ε)f(x) = |a|−1f(a−1Ω−1
ε A−1

s (x− b)).

The dual action R2 × K 3 (η, k) 7→ tkη has a single open
orbit O = {(x, y) ∈ R2 : |x| 6= |y|} for t(1, 0) ∈ R2 of full
measure and the stabilizer K(1,0) = {(0, 1, 1)} is compact.
Then, by a result due to Führ in [8], the representation π is
square-integrable. Furthermore, G acts on L2(Ξ,dξ) by means
of the quasi-regular representation π̂ defined by

π̂(b, s, a, ε)F (η, u, t) = |a|− 1
2F

(
ε η, u+ s,

t− Ωηw(u) · b
a

)
.

By Mackey imprimitivity theorem [9], one can show that also
π̂ is irreducible. The proof, although not trivial, is based on
classical arguments and we omit it.



C. The Radon transform

We compute by (2) the Radon transform between the
homogeneous spaces X and Ξ and we obtain

Rf(η, u, t) =

∫
R
f(ΩηA−u

t(t, y))dy, (11)

which maps any (η, u, t) ∈ Ξ in the integral of f over the line
parametrized by (η, u, t) through the map (η, u, t) 7→ ̂(η, u, t),
i.e. the line of equation x · Ωηw(u) = t. Observe that,
by Fubini’s theorem, the integral (11) converges for any
f ∈ L1(R2). Then, we define

A = {f ∈ L1 ∩ L2(R2) :

∫
R2

|Ff(ω1, ω2)|2√
|ω1

2 − ω2
2|

dω1dω2<+∞},

which is π-invariant and is such that Rf ∈ L2(Ξ,dξ) for all
f ∈ A. Furthermore, it is possible to show that R, regarded
as operator from A to L2(Ξ,dξ), is closable. In order to de-
termine the subspace A and to prove that R : A → L2(Ξ,dξ)
is closable, we exploit a classical result in Radon theory, the
so-called Fourier slice theorem [2, Chapter I], adapted to our
context, precisely

(I ⊗F)Rf(η, u, τ) = Ff(τ Ωηw(u)),

for every f ∈ L1(R2) and (η, u, τ) ∈ Ξ, where I is the identity
operator on L2(C2 × R,dηdu).

It is worth observing that when we fix η = 1 (η = −1)
in (11) we are restricting the integration of f over all lines
with slope > 1 (< 1). Then, for η = 1 and η = −1 we have
the limited angle horizontal and vertical Radon transforms,
respectively. We will see in the next section how these two
different contributions enter in the inversion formula when we
reconstruct an unknown signal from its Radon transform.

D. Unitarization and Inversion formula

Applying Theorem 1, R : A → L2(Ξ,dξ) is a densely
defined operator which intertwines the representations π and
π̂ up to the positive character χ(b, s, a, ε) = |a|−1/2, namely

π̂(b, s, a, ε)Rπ(b, s, a, ε)−1 = |a|−1/2R,

for all (b, s, a, ε) ∈ G.
The composition of R with a positive selfadjoint operator

I satisfying

π̂(b, s, a, ε)Iπ̂(b, s, a, ε)−1 = |a|1/2I

can be extended to a unitary operatorQ : L2(R2)→ L2(Ξ,dξ)
intertwining the irreducible representations π and π̂.

We can provide an explicit formula for I. We consider the
subspace D of L2(Ξ,dξ) of the functions F such that∫

R×R
|τ ||(I ⊗F)F (η, u, τ)|2 dudτ <+∞, η = −1, 1,

and we define the operator J on D by

(I ⊗F)JF (η, u, τ) = |τ | 12 (I ⊗F)f(η, u, τ),

a Fourier multiplier with respect to the last variable. A
direct calculation shows that J is a densely defined positive
selfadjoint operator with the property

π̂(b, s, a, ε)J π̂(b, s, a, ε)−1 = |a|1/2J .

By [10, Theorem 1], there exists c > 0 such that I = cJ and
we show that c = 1.

It is possible to prove that the admissible vectors for π are
the functions ψ ∈ L2(R2) satisfying∫

R2

|Fψ(ω1, ω2)|2

|ω1
2 − ω2

2|
dω1dω2 = 1. (12)

The voice transform is then (Vψf)(g) = 〈f, π(g)ψ〉, and is a
multiple of an isometry from L2(R2) into L2(G,dµ) provided
that ψ satisfies the admissible condition (12). If Qψ ∈ dom I,
by equation (8), we have that

(Vψf)(b, s, a, ε) = (13)∫
R×R
Rf(1, u, t)Ψ(ε, u+ s,

t− w(u) · b
a

)
dudt

|a|

+

∫
R×R
Rf(−1, u, t)Ψ(−ε, u+ s,

t− Ω−1w(u) · b
a

)
dudt

|a|
,

for any f ∈ A, where Ψ = IQψ. Note that the co-
efficients depend on f only through its Radon transform
and do not involve the operator I as applied to the signal.
Hence, equation (6) allows to reconstruct an unknown signal
f ∈ A from its Radon transform by computing the coefficients
(Vψf)(b, s, a, ε) by means of (13). It is worth observing that
the different contributions in (13) with η = 1 and η = −1
reconstruct the frequency projections of f onto the horizontal
cone {(ω1, ω2) ∈ R2 : |ω2/ω1| < 1} and onto the vertical
cone {(ω1, ω2) ∈ R2 : |ω1/ω2| < 1}, respectively. Moreover,
if we choose Ψ(η, u, t) = Ψ2(η, u)Ψ1(t), we obtain a formula
for the voice transform which involves only integral transforms
applied to the Radon transform of the signal, precisely a 1D-
wavelet transform, followed by a convolution and it reads

(Vψf)(b, s, a, ε) = |a|− 1
2∑

η=−1,1

(WΨ1
(Rf(η, •, ·))(Ωηw(•) · b, a) ∗u Ψ2(ηε, •))(−s),

provided that Ψ1 is a 1D-wavelet.
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