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Abstract—Matrix completion has become an extremely im-
portant technique as data scientists are routinely faced with
large, incomplete datasets on which they wish to perform
statistical inferences. We investigate how error introduced via
matrix completion affects statistical inference. Furthermore, we
prove recovery error bounds which depend upon the matrix
recovery error for several common statistical inferences. We
consider matrix recovery via nuclear norm minimization and
a variant, /;-regularized nuclear norm minimization for data
with a structured sampling pattern. Finally, we run a series of
numerical experiments on synthetic data and real patient surveys
from MyLymeData, which illustrate the relationship between
inference recovery error and matrix recovery error. These results
indicate that exact matrix recovery is often not necessary to
achieve small inference recovery error.

I. BACKGROUND AND MOTIVATION

Real-world data is often high-dimensional and incomplete;
e.g., a survey may be incomplete because respondents may
skip questions or as a consequence of the structure of the
survey. In recent years, much work has been invested towards
determining efficient and accurate methods for data comple-
tion [4], [9], [10], [11]. Often, however, data practitioners
are not interested in any particular missing entry or the
completed data itself, but in performing statistical inferences
on the completed data set (e.g., entrywise mean, regression,
classification) [1]. For this reason, we study how missing and
artificially completed data introduces error into the recovery
of statistical inferences.

In general, incomplete data can be modeled as a matrix
with subsampled entries. Matrix completion results typically
assume that the entries are sampled uniformly. Unfortunately,
this is invalid in many practical situations. We consider various
sampling strategies which select entries from a complete
matrix to construct an incomplete matrix. Entries of a data
matrix could be selected using uniform sampling; that is, each
entry could be sampled with equal probability as in [3]. On
the other hand, one could employ structured sampling and
select entries with probabilities that depend upon their value
as in [8]. The details of these two sampling methods are
given in Section I-B. Such strategies can be used to model
the ways that incomplete data appears in the real world. For
instance, we consider a structured sampling strategy in which
entries of smaller magnitude are sampled less often. This
models the situation in which survey participants are more
likely to skip questions that are not important to them (in
which their answers may have smaller magnitude). There are
numerous other works studying matrix completion techniques
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under various sampling strategies; see e.g., [5] and references
therein.

If the matrix to be recovered is low rank, one can accurately
infer the missing entries of the data matrix under various
conditions. Indeed, Candes and Recht show that if the observed
sample of entries is uniformly distributed and sufficiently
large then one can exactly recover the matrix via nuclear
norm minimization [3]. There are many matrix completion
approaches, however we focus on nuclear norm minimization
(NNM) and /;-regularized nuclear norm minimization (/1-
NNM), defined in Subsection I-A.

Data completion can also be helpful for data collection
purposes; only partial information may be required for data
completion to preserve the statistical properties of a dataset,
allowing for reduction in the quantity of data that must be
collected, stored, or transmitted. Returning to the survey exam-
ple, one could ask respondents a small selection of questions
from a larger set of candidate questions, predict their answers
to the unasked questions using data completion, and apply
inference methods to the recovered dataset. These applications
are of particular interest to LymeDisease.org, an advocacy
organization that collects survey data from Lyme patients
through studies like MyLymeData [7]. The surveys used in
MyLymeData branch, presenting different sets of questions
to respondents based on their previous answers. Patients may
also skip questions. The resulting data matrix, in which rows
correspond to patients and columns correspond to questions,
is highly incomplete. Another concern of LymeDisease.org is
the length of the MyLymeData surveys, since overlong surveys
can cause survey fatigue and lead patients to ignore questions
or answer inaccurately. Developing sound inference methods
for incomplete data would allow us to sample strategically and
use data completion techniques to design shorter surveys that
preserve high-level information about the respondents.

In this report, we study the effects of different sampling
techniques on statistical inference. We derive provable error
bounds for certain statistics and run numerical simulations on
synthetic data as well as large-scale, incomplete survey data
from MyLymeData with the goal of reducing the amount of
data required from each survey respondent while preserving
population-level insights.

A. Notation

We begin by establishing notation that will be used through-
out the paper. Recall that [n] = {1,2,...,n}. For A € R™*",
we denote the (7,7) entry of A as A;; and the ith row of



A as a;. The standard ¢,-norm on R" is denoted || - ||, for
1 < g < oo. For A € R™*", ||A]|4 is the entrywise matrix
g-norm; i.e., the £,-norm of the vectorization of A. The matrix
nuclear norm is denoted ||A ||, = trace(v A*A).

We consider two sampling strategies, uniform and structured
sampling. For uniform sampling, the probability of sampling
each entry is given by p € (0,1). We also investigate a struc-
tured sampling strategy in which the probability of sampling
entries equal to zero is given by pg, and the probability of
sampling nonzero entries is given by p;; we assume pg < pj.

We denote the original complete matrix by M, the set of
observed indices from the original matrix by © C [m]x [n], the
unobserved indices byN QF, the observed matrix by Mg, the
recovered matrix by M, and the fraction of entries which are
observed as w € (0,1). We consider two recovery methods,
nuclear norm minimization (NNM) and ¢; -regularized nfuvclear
norm minimization (¢1-NNM). The recovered matrix M for
NNM is defined as

argmin || X[, s.t. M;; = X;; for all (4,5) € Q.
XeRan

The recovered matrix M for #1-NNM is defined as

argmin || X[, + of|Xqc|1 s.t. M;; = X;; for all (i,7) € Q
XERmxn

for some regularization parameter o > 0. The addition of the
¢ -regularization term in the objective of /1-NNM encourages
unobserved entries of the recovered matrix to be near 0, which
makes it a natural choice for recovery on an incomplete matrix
generated by structured sampling [8].

The inferences we consider are basic statistics. The first
inference is the entrywise mean, defined as A(A) =
i 2oy 25—y Aij. We additionally consider the row mean,
a row vector containing the mean value for each column
or feature, which is defined as p(A) = L3> a; In
terms of our application to health survey data consisting
of patient responses to questions regarding their symptoms,
these inferences could be regarded as an average “wellness”
score for a group of patients (entrywise mean) or the average
responses of a group of patients (row mean).

B. Methodology

To perform our experiments, we begin with a complete
matrix M either artificial or extracted from real data, which
we take as the ground truth. We then use either the uniform
or structured sampling strategies to obtain an incomplete
observed matrix, M. The values of p and pg,p; used for
uniform and structured sampling respectively are noted in
each experiment. We recover M via either NNM or ¢;-NNM.
For Mg constructed via the uniform sampling strategy, we
use NNM to recover M while for Mg constructed via ge
structured sampling strategy, we use ¢1-NNM to recover M.
Here, we choose the regularization parameter « optimally
from among {0.05,0.1,0.2,...,0.5} to minimize the resulting

error ||M — MH r. We use the alternating direction method of
multipliers (ADMM) to solve both NNM and ¢;-NNM. The
details of the implementation of ADMM for NNM can be
found in [6]. To apply ADMM to solve ¢1-NNM, we rewrite
the ¢1-NNM model as

min

s.t.

X[« + [ Y]

Po(X) = Po(M),

Poc (X) = Poc(Y).

The augmented Lagrangian function of this program is

Li(X,Y,Z) = |XI|. + al[Y[l1 + THZT (Po(X) — Po(M))
+Tr[Z3 (Poe (X) — Pac (Y))]

+ 2lIPa(X) = Po(M) [ + | Pac (X) — Pae (Y) 3]

where Z1 = Po(Z),Zs = Poc(Z), and the iteration steps are
Xkl = arg min Li(X,Y* ZF),
YFH = arg min Ly(XF1 Y, ZF),

ZyT = Z + t(Po(XFT) — Po(M)),
ZETE = 75 + t(Poe (XFTY) — Poe (YHH)).

We consider the normalized matrix recovery error
EM,M) := |[M — M| r/||M||F as an estimate of the error
introduced by sampling and data completion. Finally, we com-
pute inferences on the original matrix M and the recovered
matrix M. We estimate the inference error between these two
matrices via various measures. We define the absolute error
of the entrywise mean as E5(M,M) := |A(M) — A(M))|
and the normalized error of the row mean as E,(M,M) :=
[l4(M) — (M) ]l2/ || (M) |2

We perform numerical experiments on both synthetic and
real-world data. The real-world dataset consists of survey data
from the MyLymeData patient study conducted by LymeDis-
ease.org [7]. For experiments on synthetic data, we generate
artificial matrices as follows. To guarantee a certain rank
r, we generate m X m scalar matrices by multiplying two
matrices whose sizes are m X r and r X n. The entries of
each pair of matrices we generate are uniformly distributed
integers within the range [0, C]. For experiments on real data,
we extract a complete portion of MyLymeData consisting of
patient responses to questions regarding their symptoms and
health history.

II. EXPERIMENTAL RESULTS

In Figures 1, 2, and 3, we plot experimentally collected
matrix and inference recovery errors on synthetic matrices;
the figures differ by the choice of zero sampling probability
po for the structured sampling strategy. We generate a 30 x 30
matrix with rank 5 as described in Subsection I-B. For
various p and (pp,p1) sampling probabilities, we measure
the resulting matrix recovery errors and inference recovery



errors. These results are averaged over 10 trials (each trial
consists of a sample of observed entries) and plotted with
the standard deviation of these errors. Errors are plotted
versus the proportion of observed entries w. We additionally
record the optimal regularization parameter o which resulted
in the smallest matrix recovery error for the given structured
sampling proportion w in the plots in the upper left of each
figure.
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Fig. 1. Recovery errors for unif. sampling with NNM and structured sampling
with pg = 0 (no entries equal to zero are sampled) and ¢;-NNM on
synthetic data. Upper left: optimal regularization parameter « for observation
proportions w; upper right: normalized matrix recovery errors E; lower left:
normalized error of the row mean E,; lower right: absolute error of the
entrywise mean E.

N |—a—uniform
305 K 0.5 \\S\_\‘y
0 B — 0
0 0.2 0.4 0.6 0 0.2 0.4 0.6
w w
1 —— 1
AN e \
05 \KA\‘M ﬁ(O.S \&&v
0 0.2 0.4 0.6 0 0.2 0.4 0.6
w w

Fig. 2. Recovery errors for unif. sampling with NNM and structured sampling
with po = 0.2 and ¢1-NNM on synthetic data. Upper left: optimal regular-
ization parameter o for observation proportions w; upper right: normalized
matrix recovery errors E; lower left: normalized error of the row mean F,;
lower right: absolute error of the entrywise mean E.

In Figures 4, 5, and 6, we plot experimentally collected ma-
trix and inference recovery errors on MyLymeData matrices;
the figures differ by the choice of zero sampling probability
po for the structured sampling strategy. We select a complete
matrix of size 30 x 16 by selecting the 16 questions (columns)
every patient must answer and select the 30 patients with
the most zero entries. For various p and (pg,p;) sampling
probabilities, we measure the resulting matrix recovery errors
and inference recovery errors. These results are averaged over
10 trials (each trial consists of a sample of observed entries)
and plotted with the standard deviation of these errors. Errors
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Fig. 3. Recovery errors for uniform sampling with NNM and structured

sampling with po = 0.4 and ¢;-NNM on synthetic data. Upper left:
optimal regularization parameter o for observation proportions w; upper right:
normalized matrix recovery errors E; lower left: normalized error of the row
mean E,; lower right: absolute error of the entrywise mean E.
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Fig. 4. Recovery errors for uniform sampling with NNM and structured
sampling with pop = 0 with ¢;-NNM on MyLymeData. Upper left: optimal
regularization parameter « for various observation proportions w; upper right:
normalized matrix recovery errors E; lower left: normalized error of the row
mean E,,; lower right: absolute error of the entrywise mean E.

are plotted versus the proportion of observed entries w. We
additionally record the optimal regularization parameter «
which resulted in the smallest matrix recovery for the given
structured sampling proportion w error in the plots in the upper
left of each figure.

Note that in Figures 1, 2, 3, 4, and 5, the optimal regular-
ization parameter « is greater than zero for sufficiently large
observation proportion w. Furthermore, in Figures 1, 2, 3, 4,
and 5, the /1-NNM recovered solution is exact for sufficiently
large w, and the ¢1-NNM recovery for the observations sam-
pled via the structured strategy is more accurate than the NNM
recovery for the observations sampled via the uniform strategy
for larger proportion w. Finally, the inference recoveries are
often exact for smaller w than is necessary for exact matrix
recovery, as in Figure 1, 2, and 3.

III. THEORETICAL RESULTS

Given that the matrix recovery error has been studied closely
in the literature [3], [2], we aim to bound the inference
recovery error by a function of the matrix recovery error.
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Fig. 5. Recovery errors for uniform sampling with NNM and structured

sampling with pg = 0.2 with £;-NNM on MyLymeData. Upper left: optimal
regularization parameter « for various observation proportions w; upper right:
normalized matrix recovery errors E; lower left: normalized error of the row
mean E,; lower right: absolute error of the entrywise mean E5.
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Fig. 6. Recovery errors for uniform sampling with NNM and structured
sampling with pg = 0.4 with £;-NNM on MyLymeData. Upper left: optimal
regularization parameter « for various observation proportions w; upper right:
normalized matrix recovery errors E; lower left: normalized error of the row
mean E,; lower right: absolute error of the entrywise mean E’.

Specifically, we establish bounds on the recovery error for
the entrywise mean and row mean.

The first result bounds the recovery error of the entrywise
mean )\ and the row mean p by a scalar multiple of the
matrix recovery error. Recall that ||A||, denotes the standard
¢, vector-norm of the vectorization of the matrix A.

Theorem IIL.1. Let \ and ;i be the entrywise and row mean
operators respectively. Then

AM) — AV < (mn)”¢[M - M],

and

q—1 7

)~ ¥, < (=) - v,

for all M,ﬁ eR™ " and 1 < q < o0.

Proof. First, note that X and (1 are linear operators, So
it suffices to show that |[A(A)| < (mn)~'9||A|, and
(A, < (n971/m)Y9||A||, for A € R™*™, Next, note

that |[A(A)| < ||A|l;/mn. Applying Holder’s inequality, we
have 1

— 1

AMA) < —A|L < Tal|A

AA) < - [All < (mn)" A,

where 1/¢ assumes the value 0 if ¢ = oco.
Next, note that

q
1 K& 1
i 2| 24| <
j=1|i=1

AN _ Al

n m

>O> 1A4
1

j=1i=

(A1

md m
where the last inequality follows from Holder’s inequality. [

In Figure 7, we explore the bounds given in Theorem III.1.
We generate 20 random scalar matrices of size 16 x 80 as
described in Subection I-B. For each matrix, we collect 20
uniform samples of the entries using the sampling probability
p, then calculate the averages of the entrywise mean recovery
error, the row mean recovery error, and the derived upper
bounds based on the matrix recovery error for each sample.
We perform this process for p = 0,0.01, ..., 1.
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Fig. 7. The averages of the 400 sampled inference recovery errors and the
derived upper bounds for uniform observation sampling probabilities from O
to 1, with step size 0.01. Left: entrywise mean error; right: row mean error.

Finally, we present a simple analytic bound for NNM matrix
recovery error. This result holds for any sampling strategy,
even deterministic strategies. Note that this bound along with
the previous result offers a bound on the inference recovery
errors even if the matrix recovery is not exact.

Theorem IIL2. Let M € R™*" Q. and M be computed
via NNM as described in Subsection I-A. Let r = rank(M)
denote the rank of M, and denote the singular values of M
by o1 > 09 > --- > 0, in decreasing order. Then

IM = M| < 2y/r20? — M| (1)
Proof. Applying the Parallelogram Identity, we have
IV = M =2 (M + M) = M+ M.

We bound each term of the right-hand side, beginning with

the | M||% term. By Holder’s Inequality, we have
IM|3 = [[(o1,02,...,0,)|3 < r?of.

Next, we bound the HIVIHQF term above. Since M is feasible
for the nuclear norm minimization problem, note that || M|, <



[IM||«. Therefore, through repeated use of Holder’s Inequality,
we calculate that

IM|% < M2 <M = || (01,02, .-
Finally, note that

IM+M|7 > [Mo+Mo 7 = > (2M;;)* = 4[Mq|3.
(1,7)€Q

O

Note that this bound guarantees exact recovery when all
entries of the matrix are observed and all singular values of
the matrix are equal, but is likely not tight for many situations
when exact recovery can be guaranteed by e.g., [3], [2].

IV. CONCLUSION

In this work, we explored how error introduced by data
completion affects recovery of statistical inferences. Our nu-
merical experiments demonstrate that simple inferences such
as the entrywise mean or the row mean can be recovered
accurately even when the matrix is not recovered exactly.
We prove bounds on the inference recovery error in terms
of the matrix recovery error for the entrywise mean and the
row mean. Additionally, we prove an analytical bound on the
matrix recovery error which applies even when the matrix
cannot be recovered exactly.

Future directions include exploring more common statistical
inferences, such as support vector machine models. Addition-
ally, we hope to develop a better analytic bound on the matrix
recovery error which generalizes the exact recovery results in
the literature. Furthermore, we will explore theory for exact
recovery via ¢;-NNM for matrices whose observations are
sampled via the structured sampling strategy.
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