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Abstract—Compressive sampling has become an important tool in
diverse applications. One of its main challenges, the construction of
deterministic sensing matrices with restricted isometry property (RIP)
in the optimal sparsity regime, is still an open problem, despite being
of crucial importance for practical system designs. The only known
work constructing deterministic RIP matrices beyond the square root
bottleneck is due to Bourgain et al. The aim of this paper is to construct
sensing matrices consisting of two orthogonal bases and to analyse
their RIP properties based on the flat-RIP. Using a known estimation
on exponential sums due to Karatsuba, we deduce an RIP result for
signals which are restricted to a certain sparse structure. Without any
assumption on the sparsity structure, we end up facing a known open
problem from number theory regarding exponential sums.

Index Terms—deterministic compressive sampling, flat restricted isom-
etry property, structured sparsity

I. INTRODUCTION

Compressive Sampling (CS) is a modern signal processing frame-
work which became popular recently. The main idea is that a sparse
signal can be recovered from fewer measurements then its ambient
dimension [1], [2] and so, CS has found its way into various
engineering applications [3]–[6]. The usual model is that of an
underdetermined system of linear equations y = Φx with y ∈ Cm,
x ∈ CN , m� N and |supp(x)| ≤ s. We denote the set of s-sparse
vectors in CN by ΣNs , and we call Φ the sensing (or measurement)
matrix. The main result of CS states that when s is sufficiently small
then x can be uniquely recovered from y provided Φ satisfies some
sufficient conditions. One such sufficient condition is the restricted
isometry property (RIP) which was introduced in [7]. The following
definition of the RIP is taken from [2].

Definition 1: A matrix Φ ∈ Cm×N has the (s, δ)-restricted isometry
property if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

for every s-sparse vector x ∈ CN . The smallest δ for which Φ has
(s, δ)-RIP is the restricted isometry constant (RIC) δs. Equivalently

δs = max
I⊂{0,1,...,N−1}

|I|≤s

σmax (Φ∗IΦI − Is) . (1)

Based on RIP, recovery guarantees with high probability were proven
for random constructions of the sensing matrix Φ and for sparsity
levels s < c m

log(N/s)
with a certain positive constant c [1], [2],

[8]. Deterministic constructions of matrices with RIP in the optimal
sparsity regime are not known. To the best of our knowledge, the
only construction of a deterministic RIP matrix beyond the quadratic
bottleneck is given in [9]. Despite being a mathematical breakthrough
the improvement made on the sparsity level is negligible from a
practical point of view [10]. Therefore the search for deterministic
RIP matrices remains an interesting question from a practical and
theoretical perspective.
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This paper investigates a family of sensing matrices which are
concatenations of two orthogonal matrices. We prove an RIP result
beyond the quadratic bottleneck for sparse signals with a certain
support pattern, following the ideas of flat-RIP introduced in [9].
More precisely, we use the flat-restricted orthogonality (RO) given in
[11] as an alternative description of the flat-RIP. Our main result may
be summarized as follows: For all signals having a certain sparsity
pattern x ∈ Λ ⊂ ΣNs ⊂ CN the constructed sensing matrices satisfy
(s, δΛ,s)-RIP with s ≤ m

29
40

+κ and δΛ,s = 300c0m
−0.002+κ log(m)

for any κ < 0.002. Here 9
40

+ κ > 0 reflects the improvement over
the quadratic bottleneck.

We want to point out that our analysis is similar to [12]. Although
we follow a different path the underlying core estimation idea in both
approaches is the same.

II. PRELIMINARIES AND RELEVANT RESULTS

We consider vectors g in the m-dimensional Euclidean vector
space Cm. Entries in these vectors are indexed by the m-element
cyclic group Zm = Z/mZ, i.e. g = (g(0),g(1), . . . ,g(m− 1))T.
The identity matrix in Cm is denoted by Im and F stands for the
discrete Fourier transform (DFT) matrix in Cm, given by

F = [ f0 f1 ... fm−1 ] with columns fl(j) = 1√
m
ωlj (2)

wherein ω = exp{i 2π
m
}. Let A = {al,j}l,j∈{0,...,m−1} ∈ Cm×m

be a matrix with entry al,j in l-th row and j-th column. If I,J ⊂
{0, 1, . . . ,m− 1} are two index sets, then the submatrix AI,J of
A is given by AI,J = {al,j}l∈I,j∈J . If I = J then AI,I is
called a principal submatrix of A. Moreover, the eigenvalue of A
with the largest magnitude is denoted by λmax (A) and σmax (A)
stands for the largest singular value. Similarly, given a sensing matrix
Φ ∈ Cm×N and an index set I with |I| = s, we denote the submatrix
of Φ consisting of the columns of Φ indexed by I as ΦI ∈ Cm×s.

Characters in finite fields: For an arbitrary prime number p,
Fp stands for the finite field of order p. Let α be a fixed primitive
element of Fp. The multiplicative characters in Fp are given by

χαl
(
αk
)

= exp

{
i

2π

p− 1
kl

}
for l, k ∈ {0, 1, ..., p− 2} (3)

and χαl (0) = 0 for l ∈ {0, 1, ..., p− 2} .

Legendre symbol and exponential sums: The quadratic residues
of a finite field will play an important role in the upcoming analysis.
Assume p to be a prime number and define the set of quadratic
residues in the finite field Fp as

QR =
{
x2 : x ∈ Fp , x 6= 0

}
,

and the corresponding Legendre symbol is defined as follows

(
a

p

)
=


1 if a ∈ QR
−1 if a 6∈ QR and a 6= 0

0 if a ≡ 0 mod p

. (4)



It will be important to note that the Legendre symbol is just a
particular multiplicative character (3) on Fp obtained by setting
l = (p− 1)/2 in (3), i.e. one has(

αk

p

)
= χα(p−1)/2(αk) = exp(iπk) =: χL(αk)

and χL(0) = 0 .

(5)

Later we will also need the following well-known result on
quadratic Gauss sum, see [13].

Theorem 1: For all odd integers n ≥ 3, one has
n−1∑
x=0

exp

{
i
2π

n
x2

}
=

{√
n if n ≡ 1 mod 4

i
√
n if n ≡ 3 mod 4

.

Our analysis will use an estimate on character sums due to
Karatsuba. The following theorem can be found in this form in [15],
for more details see [16] and [17].

Theorem 2: Let χ be a non-trivial multiplicative character of Fp
and I,J ⊂ Fp. If |I| > p0.5+γ and |J | > pγ , where 0 < γ < 0.5,
then ∣∣∣∣∣∑

a∈I

∑
b∈J

χ (a+ b)

∣∣∣∣∣ ≤ cp−0.05γ2 |I| |J |

holds for some constant c > 0.

Flat restricted orthogonality: The flat restricted orthogonality
as given in [11] is going to play a key role in our analysis. Here
we briefly discuss some known results and the connections between
RIP, RO and flat-RO which will be used in the upcoming sections.
Restricted orthogonality is a property which is closely related to the
RIP [2] and defined as follows.

Definition 2: The (k, l)-restricted orthogonality constant (ROC) θk,l
of a matrix Φ is the smallest θ ≥ 0 such that

|〈Φu,Φv〉| ≤ θ ‖u‖2 ‖v‖2
for all disjointly supported k-sparse and l-sparse vectors u and v,
respectively. Equivalently it is given by

θk,l = max{σmax (Φ∗KΦL) , K ∩ L = ∅ , |K| ≤ k, |L| ≤ l}

where σmax (Φ∗KΦL) is the largest singular value of Φ∗KΦL.

An idea used in [9] is the flat-RIP. An alternative formulation of
the flat-RIP is given as flat-RO in [11], which will play a fundamental
role subsequently.

Definition 3: The matrix Φ = [ϕ1,ϕ2, ...,ϕN ] has (s, θ̂)-flat re-
stricted orthogonality if∣∣∣〈∑l∈I ϕl,

∑
j∈J ϕj

〉∣∣∣ ≤ θ̂√|I||J | (6)

for each disjoint pair I,J ⊆ {1, ..., N} with |I|, |J | ≤ s.
The following theorem (Thm. 13 in [11]) gives an estimation of the
restricted orthogonality based on the flat restricted orthogonality.

Theorem 3: A matrix with (s, θ̂)-flat restricted orthogonality has a
restricted orthogonality constant satisfying θs,s ≤ Cθ̂ log s, and we
may take C = 75.

Finally, we need the following auxiliary result which can be found
in [2], [10].

Lemma 4: If Φ has (s, δ)-RIP, then Φ has (ns, 2nδ)-RIP for all
n ≥ 1.

It gives an estimate on the restricted isometry property for larger
sparsity if the RIP is already known for a small values of sparsity.

III. CONSTRUCTION OF THE SENSING MATRIX

This section describes the construction of the sensing matrices Φ
and gives some insight into their structure. To this end, we define for
an odd prime number m the vector φ ∈ Cm by

φ(x) =

{(
x
m

)
if x ∈ {1, ...,m− 1}

−1 if x = 0

and therewith the diagonal matrix Dφ = diag (φ). Then we set

C = DφF

wherein F is the unitary DFT-matrix defined in (2). Now we consider
the m × 2m sensing matrix Φ = [C | F] and investigate its Gram
matrix

G = Φ∗Φ =

[
C∗C C∗F
F∗C F∗F

]
=

[
Im U
U∗ Im

]
(7)

with U = C∗F = F∗DφF. We note that U is unitary, self-adjoint,
and because U is diagonalized by the DFT matrix, it is circulant.
In fact U has only three different entries because each entry can
be written by means of a quadratic Gaussian sum as expressed in
Theorem 1. Indeed, using some elementary relations from number
theory on quadratic congruences (see, e.g., [13]) and Theorem 1, one
obtains for the entries ul,j = 〈cl, fj〉 of U, the values

〈cl, fj〉 = 〈fl,Dφfj〉 =
1

m

∑
x∈QR

(
ωj−l

)x
− 1

m

∑
x∈QRc

(
ωj−l

)x
=


1
m

(
−1 +

(
j−l
m

)√
m
)

if m ≡ 1 mod 4

1
m

(
−1− i

(
j−l
m

)√
m
)

if m ≡ 3 mod 4
(8)

with ω = exp
{
i 2π
m

}
, and where cl is the l-th column of C.

An obvious question is what can we say about the RIP in our two-
ortho case Φ = [C | F] from the Gram matrix G given in (7)? In
fact, one can upper bound the restricted isometry constant δ of our
sensing matrix for any sparsity as follows.

Proposition 1: The restricted isometry constant of Φ = [C|F]
satisfies δs ≤ 1 for any sparsity s ≤ m.

The proof of this statement follows easily from the following well
known lemma.

Lemma 5 (Thm. 4.3.15 in [14]): Let A be a Hermitian matrix, let
s be an integer with 1 ≤ s ≤ m, and let As be an arbitrary s-by-s
principal submatrix of A. Then

λk (A) ≤ λk (As) ≤ λk+m−s (A) for all 1 ≤ k ≤ s .

Therein λk (A) stands for the k-th eigenvalue of A sorted in
increasing order.

Proof (Proposition 1): Recall the definition of the s-th restricted
isometry constant,

δs = max
I⊆{0,1,...,N−1}

|I|=s

λmax ((Φ∗IΦI)− Is)

and note that Φ∗IΦI is a principal submatrix of the Gram matrix
G = Φ∗Φ. In fact Φ∗IΦI− Is is a principal submatrix of G− I2m.
It is easy to verify that G−I2m is unitary and has only the eigenvalues
1 and −1. Lemma 5 implies that the eigenvalues of any principal
submatrix of G− I2m lie in the interval [−1, 1], which then implies
that δs ∈ [0, 1] for all s ≤ m.

The standard approach with the Gershgorin circles (which results
in the well known quadratic bottleneck for the sparsity) would give



sparsity results proportional to
√
m, because the coherence of the

sensing matrices is µ (Φ) =
√
m+1
m

. In contrast to this, Proposition 1
asserts that the RIC is upper bounded by 1 indicating that our
constructed matrices are suitable sensing matrices.

IV. AN RIP RESULT FOR STRUCTURED SPARSITY

After these preparations we are able to present our main result. It
shows that the m × 2m matrices Φ introduced in Section III have
RIP for structured sparse vectors in C2m.

The sparsity structure is characterized by the support set supp(x)
of the vectors x ∈ Σ2m

s . We assume that supp(x) belongs to the
set Γ with |supp(x)| ≤ s and where every S ∈ Γ has the following
sparsity structure:

S = A ∪B with
A ⊂ {0, ...,m− 1}
B ⊂ {m, ..., 2m− 1}

where

mγ− < |A| < m0.5−γ+ and m0.5+γ− < |B| < m0.5+γ+ (9)

with 0 < γ− < γ+ and γ−, γ+ ∈
(
0, 1

4

]
For instance a valid choice

for these parameters is γ− = 1
5

and γ+ = 1
4

.
Then

Λ =
{
x ∈ Σ2m

s : supp(x) ∈ Γ
}

is the set of all s-sparse vectors in C2m with this particular sparsity
pattern.

For structured s-sparse vectors in Λ, we can prove now the
following result.

Theorem 6: Let Φ ∈ Cm×2m be the matrix as defined in Section III.
Then one has for every x ∈ Λ ⊂ Σ2m

s

(1− δΛ,s) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δΛ,s) ‖x‖22

with |supp(x)| ≤ m
29
40

+κ and δΛ,s = 300c0m
−0.002+κ log (m), for

all κ < 0.002 and with an appropriate constant c0 > 0.

Remark: Theorem 6 holds only for support patterns as defined in (9),
i.e. for supports supp(x) = A∪B such that |A| ≤ m

29
40

+κ is satisfied
by one part of the support, and |B| ≤ m

9
20

+κ holds for the other
part of the support. So Theorem 6 holds for signals whose support
is known to be highly concentrated on either A or B.

Proof: We start by deriving an estimate for the flat restricted orthog-
onality of Φ as given in Def. 3. To this end, we note that Φ was
defined by Φ = [C | F] and that the support pattern S of vectors
x ∈ Σ2m

s are in Γ, i.e. they have the structure (9) with disjoint sets
A,B. Consequently the expression on the left hand side of (6) is equal
to the sum of the entries of the matrix Φ∗AΦB = C∗AFB = UA,B .
For the calculation, it is assumed that |A| ≤ mε and |B| ≤ m0.5+ε.
Using the particular structure of U, as discussed in Sec. III, and in
particular (8), one gets∣∣∣∣∣∑

a∈A

∑
b∈B

〈ca, fb〉

∣∣∣∣∣ ≤ 1

m
|A||B|+ 1√

m

∣∣∣∣∣∑
a∈A

∑
b∈B

(
a− b
m

)∣∣∣∣∣ (10)

wherein ca and fb stands for the a-th and b-th column of the matrix
C and F, respectively. Our next step is to upper bound the sum on
the right hand side of (10), we recall that the Legendre symbol is just
a particular multiplicative character on Fm (cf. (5)). Consequently,
Theorem 2 holds in particular for the character χL corresponding
to the Legendre symbol. Then our support sets S ∈ Λ satisfy the
conditions of Theorem 2 which provides us with an upper bound on

the sum on the right hand side of (10) with an appropriately choosen
ε, γ− < ε < γ+. So overall, we get∣∣∣∣∣∑

a∈A

∑
b∈B

〈ca, fb〉

∣∣∣∣∣ ≤
(

1√
m

+ cm−0.05γ2−

)√
|A||B|

≤ 2cm−0.05γ2−
√
|A||B|. (11)

In order to demonstrate that Φ has (m0.5+ε, θ̂)-flat restricted
orthogonality with θ̂ = 2cm−0.05γ2− and for signals with support
set in Γ, we need to prove that (11) establishes an upper bound for
all partial sums of the expression on the left hand side of (11).

Consider subsets PA ⊂ A and PB ⊂ B. If |PA| > mγ− and
|PB | > m0.5+γ− then one can still use the estimate of Theorem 2
and (11) remains an upper bound since |PA| ≤ |A| and |PB | ≤ |B|.
If however |PA| ≤ mγ− or |PB | ≤ m0.5+γ− then by setting γ− = 1

5

and γ+ = 1
4

and using the triangular inequality we get

1

m
|PA| |PB |+

1√
m

∣∣∣∣∣∣
∑
a∈PA

∑
b∈PB

(
a− b
m

)∣∣∣∣∣∣
≤ 1

m
|PA| |PB |+

1√
m
|PA| |PB |

≤ 2m−
1
4

+
γ+
2

+
γ−
2

√
|PA| |PB |

= 2m−0.025
√
|PA| |PB | ≤ 2cm−0.002

√
|PA| |PB | (12)

for sufficiently large m. The bounds (11) and (12) together show
that Φ satisfies (m0.5+ε, θ̂)-flat restricted orthogonality with θ̂ =

2cm−0.05γ2− with γ− < ε < γ+ for signals with support set Γ.
Theorem 3 implies therefore that the restricted orthogonality con-

stant of Φ satiesfies θmε,m0.5+ε ≤ 150c0m
−0.05γ2− log (m), with

c0 = c
(

1
2

+ ε
)
.

Now this gives an estimate for δΛ,m0.5+ε = σmax(UA,B) ≤
150c0m

−0.05γ2− log(m). Next using Lemma 4 we can general-
ize the scaling of δΛ,s to higher sparsity levels. Assume s =
m0.5+ε+κ for some κ < 0.05γ2

− then we can deduce δΛ,s ≤
300c0m

−0.05γ2−+κ log(m). Finally choosing γ− = 1
5

, γ+ = 1
4

and
ε = 9

40
establishes our assertion and finishes the proof.

V. APPLICATION: TIME-DIVISION MULTIPLE-ACCESS

Theorem 6 holds only for signal with a particular sparsity structure
(cf. Remark following Theorem 6). In the following, we sketch a
very simple application where signals with such a sparsity structure
may appear and Theorem 6 might be applied. Because of space
constraints, the example might be somewhat oversimplified but we
focus on describing the relation to Theorem 6.

Time-Division Multiple-Access (TDMA) is a widely used multiple
access technique especially in wireless and vehicular communication
system applications [18], [19]. In a standard TDMA scenario multiple
users share the same carrier frequency to communicate with a base
station. Each user is assigned a time slot during which it is allowed
to transmit messages. However, due to multipath propagation, signals
in consecutive time slot may interfere (cf. Figure 1). Therefore, a
guard interval may be insert between consecutive time slots. However,
if the transmitted signals are sparse, also the following approach
might be applied to overcome this interference problem. Assume the
transmitted signal of User 2 is ũ(t) =

∑m−1
k=0 s̃ (k) δ

(
t− k T

m

)
for

t ∈ [T, 2T ], where s̃ = Us is the linear transformation of the actual



User 1

t

TT

User 2

t

Received Signal

Time slot of User 1 Time slot of User 2

Fig. 1. The original signals of two users and the signal received by the base
station. The received signal illustrates the interference of the signal of the
second user by the transmission of the signal of the first user.

message s of User 2 using the matrix U from Section III for the
linear transformation of s. Then the received signal of User 2 is

y(t) =

m−1∑
k=0

n (k) δ

(
t− k T

m

)
+

m−1∑
k=0

s̃ (k) δ

(
t− k T

m

)
(13)

where
∑m−1
k=0 n (k) δ

(
t− k T

m

)
is the interference caused by the first

user. Further, we can assume that n is a very sparse vector because
we assume that only a small portion of the signal of User 1 is shifted
in the time slot of User 2. If s̃ is also sparse then we can formulate
(13) as a standard CS problem

y = [Im | U] x (14)

where x = [n s̃]T has a sparsity structure as in Theorem 6 with a
support which is highly concentrated on the second half of the signal.
Now, one can solve (14) to filter out the interference of User 1 from
the message of User 2.

VI. CONCLUSION & OUTLOOK

Our main results holds only for signals with a particular sparsity
structure. What happens if we drop this assumption on the structure
of the support set of the signals? Note that we used in the proof of
Theorem 6 the result by Karatsuba (Theorem 2) to estimate the sum
in (10). The restrictions on the size of I and J in Theorem 2 is the
reason for the constraint on the structure of the support set of our
signals. For a general estimate on (10), we need to drop the condition
on the size of A,B ⊂ Fp. Writing the sum with a general non-
principal multiplicative character, one ends up with a known problem
from number theory, see, for example, [15, Problem 4.3].

Problem 1: Let p be an odd prime, let γ > 0 be a real number, and
let A,B ⊂ Fp be arbitrary sets with |A|, |B| > pγ . Prove that there
exists a number τ = τ(γ) such that for any sufficiently large p and
all non-trivial multiplicative characters χ the following estimation
holds ∣∣∣∣∣∑

a∈A

∑
b∈B

χ(a+ b)

∣∣∣∣∣ < p−τ |A||B| . (15)

If a solution of Problem 1 would exist, we could use (15) to get an
upper bound in (10) without any restriction on the support set of the
signals.

Although the authors in [12] used a different construction for
the sensing matrices, it is still possible in their case to write the
inner products as quadratic Gaussian sums. Then they also end up
with a sum as in (10) and use the flat-RIP to estimate the RIP. To
estimate the sum of Legendre symbols the authors of [12] assume
that Conjecture 2.2 from [20] holds and deduce under this condition

an estimate in the following form (cf. [12, Lemma 3.3]). Assume
p ≡ 1 mod 4, α > 0, and 0 < β < 2, then

∣∣∣∣∣ ∑
a∈A b∈B

(
a− b
p

)∣∣∣∣∣ ≤ pτ√3 |A| |B| (16)

for any τ ≥ 2α/ (2− β) with A,B ⊂ Fp, |A| ≤ |B| ≤ p2τ/(2−β)

and A ∩B = ∅.
In fact, if we would have access to an estimate as in (16) then

we would not need to require the condition |A|, |B| ≤ √p in our
analysis and we could neglect the structure constraint on the support
patterns. As a final remark, we recall the statement of Proposition 1
that the RIC of the sensing matrices constructed in Section III is not
blowing up with increasing sparsity. This indicates that there might
be some hope to derive better RIP results than what was achieved
here.
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