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Abstract—This paper presents a novel sampling scheme for
the acquisition of an ensemble of correlated (lying in an a priori
unknown subspace) signals at a sub-Nyquist rate. We propose
an implementable sampling architecture that acquires structured
samples of the signals. We then show that a much fewer of
these samples compared to what is dictated by the Shannon-
Nyquist sampling theorem suffice for exact signal reconstruction.
Quantitatively, we show that an ensemble of M correlated signals
each of which is bandlimited to W/2 and can be expressed as
the linear combination of R underlying signals can be acquired
at roughly RW (to with log factors) samples per second. This is
a considerable gain in sampling rate compared to MW samples
required by Shannon-Nyquist sampling in the case when M � R.

We propose a simple least squares program for the recon-
struction of the correlated signal ensemble. This result is in
stark contrast with the previous work, where a prohibitively
computationally expensive semidefinite program is required for
signal reconstruction.

I. INTRODUCTION

This paper presents an implementable sampling architecture
for the acquisition of an ensemble of correlated signals at
a sub-Nyquist rate. We augment it with a sampling theorem
showing that the sampling rate does not scale with the number
of signals in the ensemble but only with the degree of
correlation among them. We further show that signals can
be reconstructed by solving a simple least squares program.
This is in stark contrast to earlier work [1]–[5] on the com-
pressive sampling of correlated signals that suggests solving
a computationally prohibitive semidefinite program for signal
reconstruction.

We consider ensemble of M signals, each of which is
bandlimited to frequencies below W/2 (see Figure I). The M
signals lie in an a priori unknown R-dimensional subspace
meaning that each of the signals can be decomposed as
the linear combination of R underlying signals. Shannon-
Nyquist sampling theorem dictates that the ensemble can be
reconstructed from rate MW uniformly spaced samples; W
samples for each signal in the ensemble. In comparison, we
present a sampling strategy that can acquire the correlated
ensemble at a rate ≈ RW that scales with the inherent number
R of the signals rather than with the total number M of signals.
We want to emphasize here that no a priori knowledge of
signal subspace is assumed.

The sampling architecture, shown in Figure I, is composed
of implementable components including analog vector-matrix
multiplier (AVMM), modulators, low pass filters and ADCs.
The main strategy is to preprocess the signal before acquiring

Fig. 1. Acquire an ensemble of M signals, each bandlimited to W/2 radians
per second. The signals are correlated — M signals can be well approximated
by the linear combination of R underlying signals. Quantitatively, we can
write M signals in ensemble Xc(t) (on the left) as a tall matrix (a correlation
structure) multiplied by an ensemble of R underlying independent signals.

Fig. 2. Sampling architecture for multiple signals lying in a subspace: M
signals, bandlimited to W/2 are preprocessed in analog using an analog
vector-matrix multiplier (AVMM) to produce ∆ signals, each of which is then
sampled at W samples per second. In addition, each of the M input signal is
processed by a modulator, and a low-pass filter. The resultant signal is then
sampled uniformly at a rate Ω samples per second. The analog preprocessing
is designed to perform the row and the column operation on X so that a
simple least-squares program can be used for decoding. The net sampling
rate is ΩM + ∆W samples per second.

the samples. Intuitively, the preprocessing step ensures that
the information in the signal ensemble is dispersed across the
M sensors and in time so that each sample in some sense
contains a global information about the ensemble. This allows
us to take a few samples and still be able to reconstruct the
signals exactly.

We now briefly state the task of each of the component
in the sampling architecture. The AVMM is input with M
signals in the ensemble and it produces a fewer number ∆ of
signals at the output. Each of the output signal is generated
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by the random linear combinations of the M input analog
signals. Each of the signal is then sampled at rate W . On the
other hand, the modulators multiply in analog each of the M
input signals with a random ±1 binary waveform that switches
signs at most W times a second. A modulator is implemented
using a simple switching circuit that changes the polarity of the
input signal randomly form instant to instant. Low-pass filter
are integrators that smooth out high frequency variations in the
signals, which are later sampled at a sub-Nyquist rate Ω < W .
Our main contribution is to show that the net sampling rate
∆W+MΩ is roughly of the order of RW (assuming W > M
w.l.o.g.).

Our motivation to study the correlated signal ensemble are
the classical problems in array processing, where multiple
sources emanate narrow-band signals modulated with a high
carrier frequency that arrive on array elements at different
spatial locations. The signals received at these array elements
are typically heavily spatially correlated and can be very
well approximated by a much fewer number of underlying
signals. Most of the array processing tasks such as beam
forming, interference removal, direction-of-arrival estimation,
and multiple source separation exploit this correlation among
the signals. All we are doing is to exploit the same correlation
structure to obtain gains in the sampling rate. In addition,
correlated signals arise in many applications using spatially
collocated micro-sensor arrays [6]–[9]; for example, in neural
recordings of brain tissue, and in pressure sensing in robotics,
thousands of tiny sensor arrays record heavily correlated neural
data. Sampling naively at the Nyquist rate would require
ADCs with very high rate sampling capacities resulting in
much more expensive and not as precise devices. In addition,
a huge storage capacity would be required to store several
giga bits per second of data generated in typical applications.
A compressive acquisition scheme on the other hand can
significantly dilute the requirements by orders of magnitude
when the signals are heavily correlated. For a more detailed
description of the applications, we refer the interested reader
to [1], [2], and references therein.

Most of the theoretical results presented are based on ideas
derived from the existing literature on randomized SVD; see,
for example, [10], [11]. Briefly, we frame the correlated
ensemble reconstruction from compressive samples as a low-
rank matrix recovery problem. The sampling architecture is
designed in a way such that the samples are delivering the
row, and column space measurements of the unknown low-
rank matrix. After discovering the row and column space,
the underlying low-rank matrix can be recovered using a
simple least squares program as will be demonstrated in
Section IV. The fact that we can use the computationally
inexpensive least squares program for signal reconstruction
sets this work apart from the earlier work that proposed a
prohibitively computationally expensive semidefinite program
for this purpose [1]–[5]. A more detailed version of this paper
has already appeared in [12].

The layout of the remaining manuscript is as follows. We
start with the the signal model in Section II. Section III shows

that the samples acquired by the ADCs are basically row, and
column space measurements of an underlying unknown low-
rank matrix. The sampling theorem along with a brief sketch
of its proof is given in Section VI, and VII.

II. SIGNAL MODEL

We will denote the continuous correlated input ensemble
by Xc(t) = {xm(t)}1≤m≤M , it can be thought of as a set of
M elements xm(t) each of which is a signal bandlimited 1

to frequencies W/2. We take Xc(t) to be a correlated signal
ensemble, which means that

xm(t) ≈
R∑
r=1

A[m, r]sr(t), 1 ≤ m ≤M,

for some scalar A[m, r], and underlying R signals sr(t) that
are also bandlimited to W/2. Let A[m, r] be the entries of A,
and Sc(t) := {sr(t)}1≤r≤R. We can concisely write then

Xc(t) ≈ ASc(t). (1)

We can capture xm(t) perfectly by taking W = 2B+1 equally
spaced samples per row. Let X ∈ RM×W be the matrix that
contains as its rows the Nyquist rate samples of the signals
xm(t) in t ∈ [0, 1). Let F be a W × W normalized DFT
matrix with entries

F [ω, n] =
1√
W
e−j2πωn/W , (ω, n) ∈ (W,N ),

where W := {0,±1, . . . ,±(W/2 − 1),W/2}, and N :=
{0, 1, . . . ,W − 1}. We can write

X = CF , (2)

where C is a M×W matrix whose rows contain Fourier series
coefficients for the signals in Xc(t). The signals xm(t) in the
ensemble Xc(t) only approximately lie in an R dimensional
subspace, and hence the matrices X , and C are compressible,
rank-R (only top R singular values are significant).

III. SYSTEM IN DISCRETE FORM

In this section, we show that the samples acquired by
the proposed sampling architecture in Figure I are the linear
measurements of an underlying unknown low-rank matrix. We
will show that the recovering this matrix is tantamount to the
reconstruction of signal ensemble Xc(t).

We begin by expressing the samples taken by the operating
at rate Ω as a linear transform of an underlying unknown
low-rank matrix. These ADCs sample modulated and low-pass
filtered signal of the ensemble. A modulator simply takes the
analog signals xm(t) and returns the pointwise multiplication
xm(t) · d(t). We will take d(t) to be a binary number ±1
waveform that is constant over time intervals of a certain
length 1/W . The sign changes of the binary waveforms in
each of these intervals occur randomly, and independently.
Qualitatively, the random shifts in signal polarity help disperse

1To avoid clutter, the signals are also considered to be periodic at this point,
mainly to reduce the clutter in mathematics to follow, however, the discussion
can also be extended to more general aperiodic signals, see [1]
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the energy across the bandwidth of the signal. The low-pass
operation will be carried out by integrating the input continu-
ous time signals over an interval t ∈ [(n−1)/Ω, n/Ω) ⊂ [0, 1),
where n ∈ {1, . . . ,Ω}. Each of the resultant signal is then
sampled at a rate Ω < W .

Since the integration commutes with the modulation, we
begin by integrating signals xm(t) over the interval of width
1/W , which is also the rate at which modulation occurs, to
form a matrix H with entries

H[m,n] =

∫ n/W

(n−1)/W

xm(t)dt.

Let xm(t) =
∑
ω∈W C[m,ω]e−ι2πωt, t ∈ [0, 1) be the

Fourier series expansion of xm(t), where C[m,ω]; the entries
of C, denote the Fourier coefficient of xm(t) at frequency ω.
Plugging the Fourier series relation in the integral above and
carrying out the integration, we obtain

H[m,n] =
∑
ω∈W

C[m,ω]

[
eι2πω/W − 1

ι2πω

]
e−ι2πωn/W , (3)

where the bracketed term depicts the action of integration over
an interval of 1/W in the frequency domain. Define a W ×W
diagonal matrix L with entries

L[ω, ω] =

[
eι2πω/W − 1

ι2πω

]
, for every ω ∈ W.

Note that L is invertible, and well conditioned. With the DFT
matrix F defined earlier, (3) can be expressed in matrix form
as H = CLF .

Now let D be a W×W random diagonal matrix containing
the sign patterns of d(t) in t ∈ [0, 1), and P : Ω ×W that
contains ones in locations (α, β) ∈ (j,Bj). For every j =
1, · · · ,Ω, the set Bj is defined as Bj = {(j−1)W/Ω+1, (j−
1)W/Ω + 2, . . . , jW/Ω}. Since we have already carried out
the integration step, it is easy to see that the uniform Ω rate
samples of the signals at the output of low-pass filters are
simply Y1 = HD∗P ∗. Let us denote Φ1 = PD then the
measurements Y1 are simply

Y1 = HΦ∗1, (4)

which will be interpreted as the column space measurements
of H .

We now express the samples taken by the batch of ADCs
operating at rate W as the linear measurements of H . Let
Φ1 be a ∆ × M standard Gaussian random matrix. When
AVMM is fed with the ensemble Xc(t) it produces Φ2Xc(t).
Each rows of Φ2 contains the random gains to mix the M
signals. In discrete time, the action of the AVMM becomes
Φ2X , where X is defined in (2). The ∆ rows of Φ2X are
simply the samples taken by the ∆ ADCs after the AVMM
in t ∈ [0, 1). We will take Φ2X weighted by a known and
invertible matrix F ∗LF as the observations:

Y2 = Φ2XF ∗LF = Φ2CLF = Φ2H, (5)

which can be interpreted as the row measurements of H .

As mentioned earlier the matrix of Fourier coefficients C
is compressible, rank-R. Since F is orthogonal, and L is
diagonal, this implies that H = CLF is also a compressible,
rank-R matrix. In addition, as LF is square and invertible,
the recovery of H implies that we have C, and X . The
signal ensemble Xc(t) can then be reconstructed using sinc
interpolation of the samples in X .

IV. RECOVERY ALGORITHM: LEAST SQUARES

In this section, we will layout our strategy to recover the
unknown matrix H from Y1, and Y2. Assume that ∆,Ω > R.
Since H is compressible, rank-R, so rank of matrices Y1, and
Y2 can also be greater than R. We compute the best rank-R
approximations of Y1, and Y2 using the SVDs as follows

Y1 ≈ U1Σ1V
∗

1

Y2 ≈ U2Σ2V
∗

2 , (6)

where U1 : ∆ × R, Σ1 : R × R, V1 : W × R, U2 : M × R,
Σ2 : R × R, and V2 : Ω × R. We will take U1, and V2 to
be the estimates of the row, and column space of H . Given
this information, we can immediately construct the rank-R
estimate of H to within an unknown R × R matrix Q.
We propose finding Q by just fitting the proposed solution
U1QV ∗2 to the measurements Y1, and Y2 using a quadratic
loss function below

Q̂ = argmin
Q

‖U1QV ∗2 Φ∗1 − Y1‖2F + ‖Φ2U1QV ∗2 − Y2‖2F

= argmin
Q
‖QV ∗2 Φ∗1 −U∗1Y1‖2F + ‖Φ2U1Q− Y2V2‖2F

(7)

which is a matrix least square program. The normal equations
for the least-squares program above are

Q̂V ∗2 Φ∗1Φ1V2+U∗1Φ
∗
2Φ2U1Q̂ = U∗1Y1Φ1V2+U∗1Φ

∗
2Y2V2,

or Q̂G1 + G2Q̂ = S, where G1 = V ∗2 Φ∗1Φ1V2, G2 =
U∗1Φ

∗
2Φ2U1, and S = U∗1Y1Φ1V2 + U∗1Φ

∗
2Y2V2. We can

write this R2 × R2 system of equations in vectorized form
(columns stacked on one another) as Kq̂ = s, where q̂ =
vec(Q̂), s = vec(S), and K = I ⊗G1 + G2 ⊗ I . Explicitly,

K =

G2

. . .
G2

+

G1[1, 1]I . . . G1[R, 1]I
...

. . .
...

G1[1, R]I . . . G1[R,R]I

 .
So we take q̂ = K−1s, and unstack the columns to get Q̂.
Given Q̂, we take our estimate Ĥ of H to be

Ĥ = U1Q̂V ∗2 . (8)

Theorem 1 below will show that the estimate Ĥ exactly
equals a rank-R matrix H for a large enough sampling rate.
Moreover, in the case when H is not exactly rank-R the
estimate deteriorates linearly with ‖H −HR‖F, where HR

is the best rank-R approximation of H .
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V. INCOHERENCE

Before stating the sampling theorem, we also need to
introduce a coherence parameter µ2

0 that arises in our the-
oretical results. Let HR = URΣRV

∗
R be the best rank-R

approximation of H . The coherence is defined as

µ2
0 :=

W

R
‖VR‖22→∞ =

W

R

(
max
k
‖V (k)

R ‖
2
2

)
, (9)

where V
(k)
R is the kth row of VR. It can easily be checked

that 1 ≤ µ2
0 ≤ W/R. Matrix VR spans the rows of H , thus

the coherence parameter controls the peak value of the rows
of H . Our main result in Theorem 1 shows that the sampling
rate scales linearly with µ2

0. Thus it is better to have a small
coherence. Which means that in the ideal case, we want the
rows of H to have more or less even energy distribution.
In continuous time, this dictates that the signals after going
through the low-pass filter should be sufficiently diverse.

VI. SAMPLING THEOREM

We are now ready to state our main result that dictates how
well the estimate Ĥ in (8) agrees with the true solution H .
We will denote by HR, the best rank-R approximation of H .

Theorem 1. [12] Fix β ≥ 1. Given the compressive samples
Y1, and Y2 in (4), and (5) of the correlated ensemble Xc(t)
in t ∈ [0, 1). The least squares estimate Ĥ of H obeys

‖Ĥ −H‖2F ≤ c
(

1 +
M

∆
+
W

Ω

)
‖H −HR‖2F

with probability at least 1−O(W−β), when2

∆ ≥ cR, Ω ≥ cβµ2
0R log2W,

and hence the sampling rate obeys

∆W +MΩ & cRW + cβµ2
0RM log2W.

The result states that an incoherent ensemble of M ban-
dlimited (to frequencies less than W/2), and correlated signals
lying in an a priori unknown R dimensional subspace such
that W > M � R can be acquired by sampling only at a
rate ∼ RW log2W samples per second. This could be a huge
reduction in the sampling rate if we compare it with the rate
of MW dictated by the Nyquist sampling theorem.

VII. PROOF SKETCH OF THEOREM 1

We now give a sketch of the proof of Theorem 1; the
detailed proof is deferred to a manuscript under preparation.

Proof. Let H = UΣV ∗ denote the singular value decompo-
sition of the matrix H . Let

U = [UR Ũ ], and V = [VR Ṽ ] (10)

where UR be the matrix of first R columns of U , and Ũ be
the remaining columns of U . and similarly define VR, and Ṽ .

Bounds on the singular values

2The symbol c refers to a numerical constant that may refer to a different
number every time it is used.

Recall that Φ1, and Φ2 be random matrices as defined
earlier. The first technical challenge is to obtain a lower bound
on the smallest singular values of Φ2UR, and Φ1VR, and an
upper bound on the highest singular values of Φ2Ũ , and Φ1Ṽ .

Start by noting that the ∆ × R matrix Φ2UR is also a
standard Gaussian matrix. Computing bounds on the singular
values of a Gaussian matrix is fairly standard; see, for example
[13] to find that
√

∆−
√
R ≈ σmin(Φ2UR) ≤ σmax(Φ2UR) ≈

√
∆ +

√
R

with probability at least 1−e−∆. Choosing ∆ ≥ cR for a suf-
ficiently large constant c ensures that σmin(Φ2UR) ≈

√
∆/2,

and σmin(Φ2UR) ≈
√

2∆, and σmin(Φ2UR) ≈
√

2∆. In a
similar manner, σmax(Φ2Ũ) ≈

√
M with probability at least

1− e−M .
As far as the structured random matrix Φ1VR goes,

an application of matrix Bernstein inequality shows that
σmin(Φ1VR) ≥ (

√
2)−1, and σmax(Φ1VR) ≤

√
3/2

with probability at least 1 − O(W−β), whenever Ω ≥
cβµ2

0R log2W for some fixed β ≥ 1. Moreover, the inequality
σmax(Φ1Ṽ ) ≤ c

√
W/Ω holds deterministically.

Recall that U1,U2,V1, and V2 come from the SVD of row,
and column space measurements in (6). We now state two
inequalities that are obtained directly from Theorem 9.1 in
[10].

‖H −U1U
∗
1H‖2F ≤ ‖H −HR‖2F

(
1 +

σ2
max(Φ1Ṽ )

σ2
min(Φ1VR)

)
,

(11)

and similarly,

‖H −HV2V
∗

2 ‖2F ≤ ‖H −HR‖2F

(
1 +

σ2
max(Φ2Ũ)

σ2
min(Φ2UR)

)
.

(12)

Lemma 1. Suppose that the radom matrices Φ1, and Φ2 pre-
serve geometry, i.e., σmin(Φ2UR) ≥

√
2/∆, σmax(Φ2UR) ≤√

2∆; and σmin(Φ1VR) ≥ 1/
√

2, σmax(Φ1VR) ≤
√

3/2.
The solution Ĥ in (8) of the least squares program (7) obeys

‖H − Ĥ‖2F ≤ c
(
‖H −U1U

∗
1H‖2F + ‖H −HV2V

∗
2 ‖2F

)
for an absolute constant c.

Proof. Proof of this theorem follows the template of the proof
in [14], which establishes a similar result for a simpler least
squares program compared to (7).

Combining this result of this lemma with (11), and (12),
and plugging in the bounds for the singular values

VIII. RELATED WORK AND OUR CONTRIBUTION

An in depth study of the compressive sampling schemes
of ensembles of correlated signals first started appearing in
[1]–[5]. Multiple implementable architectures are presented
along with sampling theorems that dictate the sampling rate
sufficient for exact recovery in each architecture. However,
one common theme among all this work is that the signal
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reconstruction problem involves solving a semidefinite pro-
gram, which is prohibitively computationally expensive. In
comparison, we propose a sampling architecture that allows us
to use the computationally much less expensive least-squares
approach for signal reconstruction.

Sub-Nyquist sampling strategies for sparse signals using
the ideas of compressed sensing have been pursued; see, for
example, [15]–[17] in the last decade after the advent of
compressed sensing. The work presented here differs from
this existing body of work fundamentally as the underlying
structure in not sparsity but correlation (signals reside in
an a priori unknown subspace). The work presented in this
manuscript is more general as in sparse signal reconstruction
one needs to know the sparsifying basis in advance and then
a subset of the basis functions that contribute in signal are
discovered. Comparatively, in this paper, we do not have any
knowledge about the subspace in which the signals reside and
it is completely discovered implicitly during the reconstruction
process.

Theorem 1 is basically a matrix reconstruction result from
the row and column space measurements of the matrix. A
complete body of work; see, for example, [10], [11] and
references therein, is available that shows how one can employ
least squares program to recover a matrix from its row, and
column space measurements. The main difference of our
theoretical result from these previous results is that we are
working with a very structured random matrix Φ1 with a very
limited randomness, and the results in the literature are only
available for random sampling or at most Gaussian random
projections. To derive all these results for Φ1 required more
sophisticated tools from the theory of random matrices. A
more detailed version of this paper has already appeared in
[12].
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