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Abstract—Hepatocellular carcinoma (HCC) is the
most common type of primary liver cancer in adults,
and the most common cause of death of people suffering
from cirrhosis. The segmentation of liver lesions in
CT images allows assessment of tumor load, treatment
planning, prognosis and monitoring of treatment re-
sponse. Manual segmentation is a very time-consuming
task and, in many cases, prone to inaccuracies. There-
fore, automatic tools for tumor detection and segmen-
tation are highly desirable. We propose a network ar-
chitecture that consists of two consecutive nested fully
convolutional neural networks together with a joint
minimization strategy. The first sub-network segments
the liver whereas the second sub-network segments
the actual tumor inside the liver. We compare the
nested network architecture to a one-step approach,
where a neural network performs both segmentation
tasks simultaneously. Both architectures are trained
on a subset of the LiTS (Liver Tumor Segmentation)
Challenge and evaluated on data provided from the ra-
diological center in Innsbruck. The nested approach is
shown to significantly outperform the one-step network
in terms of various accuracy measures.

I. Introduction

Liver cancer remains associated with a high mortality
rate, in part related to initial diagnosis at an advanced
stage of disease. Prospects can be significantly improved
by earlier treatment beginning, and analysis of CT images
is a main diagnostic tool for early detection of liver tumors.
Manual inspection and segmentation is a labor- and time-
intensive process yielding relatively imprecise results in
many cases. Thus, there is significant interest in developing
automated strategies to support the early detection of
lesions. Due to complex backgrounds, significant variations
in location, shape and intensity across different patients,
both, the automated liver segmentation and the further
detection of tumors, remain challenging tasks.

Semantic segmentation of CT images has been an ac-
tive area of research over the past few years. Recent
developments of deep learning have dramatically improved
the performance of artificial intelligence. Deep learning
algorithms, especially deep convolutional neural networks
(CNN) have considerably outperformed their competitors
in medical imaging. One of the most successful CNN
architectures is the so-called U-Net [1], which has won

several competitions in the field of biomedical image seg-
mentation.

(B)

Figure I.1: Illustration of the nested network archi-
tecture for automated semantic liver and tumor
segmentation. The model consists of two sequential U-
Nets. The raw images are fed into the first network, and
the output is a binary image. The original image multiplied
by the obtained liver mask represents the input of the
second U-Net. The final output is a binary image in which
label 1 is assigned to tumor.

We investigate a deep learning strategy that jointly
segments the liver and the lesions in CT images. Similar
to [2], we use a network architecture that is formed of
two consecutive U-Nets; see for related FCN architectures
[3]–[5]. The first sub-network performs liver segmentation,
while the second one incorporates the output of the first
network and segments the lesion. We propose a joint
weighted loss function combining the outputs of both
networks (Figure I.1). The network is trained on a subset
of the LiTS (Liver Tumor Segmentation Challenge) and
evaluated on different data collected at the radiological
center in Innsbruck. For our initial experiments, we per-
form consecutive training, with which we already obtain
quite accurate results. For comparison purpose, we also
implement a one-step approach, where a single multi-class



network is used for simultaneous classification of back-
ground, liver and tumor (Figure I.2). As the main finding
of our work, we demonstrate that the nested approach
significantly outperforms the one-step approach in terms of
various accuracy measures. Moreover, our finding indicates
that both networks are quite robust in the sense that even
when trained on one dataset (LiTS Challenge), they well
predict tumors when evaluated on different dataset (from
radiological center Innsbruck).

Figure I.2: Illustration of network architecture for au-
tomated liver and tumor segmentation executed in one
step. The final output is a discrete class label output in
which liver corresponds to label 1, tumor to label 2 and
background to label 0.

II. Joint Liver and Tumor Segmentation
For the following, let {X1, . . . , XN} ⊆ R512×512 and
{Y1, . . . , YN} ⊆ {0, 1, 2}512×512 denote the set of training
images and the corresponding segmented images, respec-
tively. Here, the label 1 stands for liver, 2 for tumor and
0 for background.

A. Nested Deep Learning Approach
For the task of semantic liver and tumor segmentation,

we generate segmentation masks

{A1, . . . , AN} ⊆ {0, 1}512×512

{B1, . . . , BN} ⊆ {0, 1}512×512

representing binary images Ak where class label 1 stands
for the liver or tumor, and binary images Bk where class
label 1 stands for tumor.

Our nested approach is to train two networks

Aθ : R512×512 → [0, 1]512×512

Bη : R512×512 → [0, 1]512×512

that separately perform liver and tumor segmentation.
In the fist step, the network Aθ is applied such that
Aθ(Xk) ' Ak. After decision making by selecting a thresh-
old ta ∈ (0, 1), we obtain a liver mask Mθ : R512×512 →
{0, 1}512×512 that is applied to each input image. Addi-
tionally, we applied windowing w pointwise to the intensity
values, which results in new training data

X̄k = w
(
Mθ(Xk)Xk

)
B̄k = Mθ(Xk)Bk .

These data serve as input and corresponding ground truth
for training the second network Bη. By selecting another
threshold, a mask Tη for the tumors is given.

The final classification can be performed in assigning a
pixel (i, j) to class label 2 ifMθ = Tη = 1, to class label 1 if
Mθ = 1 and Tη = 0, and class label 0 otherwise. The goal
is to find the high dimensional parameter vectors θ and η
such that the overall classification error is small. This is
achieved by minimizing a loss function that describes how
well the network performs on the training data. Here we
propose to use the joint loss function

L(θ, η) = c

N

N∑
k=1

L
(
Aθ(Xk), Ak

)
+

1− c
N

N∑
k=1

L
(
Bη(w

(
Mθ(Xk)Xk

)
),Mθ(Xk)Bk

)
, (II.1)

where L denotes the categorical cross-entropy-loss and the
constant c weights the importance of the two classification
outcomes. It has been demonstrated in [6] that a joint loss
function can improve results compared to sequential ap-
proaches for joint image reconstruction and segmentation.

B. Employed U-Net Architecture
We implement the nested model using two U-Nets Aθ,

Bη, one on top of the other. The combined network
architecture is shown in Figure I.1. The inputs for both
CNNs are grey-scale images of size 512 × 512 × 1 and
their outputs are binary images of size 512 × 512. While
the input of the first U-Net is of the form displayed in
Figure III.1, the input of the second U-Net is produced by
the output of the first one as explained in Section II-A.

In both networks, the input passes through an initial
convolution layer and is then processed by a sequence of
convolution blocks at decreasing resolutions (contracting
path). The expanding path of the U-Net then reverses this
downsampling process. Skip connections between down-
and upsampling path intend to provide local information
to the global information while upsampling. As final step
the output of the network is passed to a linear classifier
that outputs (via sigmoid) a probability for each pixel
being within the liver/tumor. The model is implemented
in Keras1 with the TensorFlow backend2.

C. Sequential Optimization
While in future work we will jointly minimize (II.1), for

our initial studies presented here we train the networks
sequentially. This means that first we optimize for θ and
then use the output of Aθ as input for Bη. Specifically, for
training the second U-net we minimize

LB(θ, η)

= − 1
N

N∑
k=1

[ 512∑
i,j=1

α1{(a,b)|B̄a,b
k

=0}(i, j) log
(
Bη(Xk)i,j

)
+ (1− α)1{(a,b)|B̄a,b

k
=1}(i, j) log

(
1− Bη(Xk)i,j

)]
. (II.2)

1https://keras.io/
2https://www.tensorflow.org/



Here B̄i,jk is the value of B̄k at pixel (i, j), and the indicator
function 1 declares whether (i, j) belongs to the class
tumor or not. The weight α ∈ (0, 1) controls the relative
importance assigned to the two classes. The best results
are achieved by applying balanced loss, where the constant
α is replaced by the weights of the form

αk = 1−
|{(a, b) | Ba,bk = 1}|

|Bk|
(II.3)

for k ∈ 1, . . . , N . Here | · | is used to count the number of
elements in some set.

Both models have been trained using stochastic gradient
decent with momentum for 300 and 600 epochs, respec-
tively. Each iteration takes about 70 seconds on NVIDIA
standard GPU. To avoid overfitting, we applied a dropout
of 0.4 in the upsampling path. Both U-Nets were trained
with a learning rate of 0.001 and categorical cross-entropy
loss. Since the tumor area only accounts for a small area
compared to the full size of the image, we applied balanced
loss (II.2) in a second optimization of the network and
reduced the learning rate to 0.0001. Comparison with the
joint loss (II.1) is subject of future work.

D. One-Step Approach
For comparison purpose we also use a basic one-step

approach, whose workflow is visualized in Figure I.2. In
this context, the segmentation task is regarded as multi-
class label classification whereas each pixel is assigned a
certain probability of belonging to class liver, tumor or
background. For that purpose we generate three binary
masks

{(C1)0, . . . , (CN )0} ⊆ {0, 1}512×512

{(C1)1, . . . , (CN )1} ⊆ {0, 1}512×512

{(C1)2, . . . , (CN )2} ⊆ {0, 1}512×512

indicating whether or not a pixel corresponds to class liver,
tumor or background, respectively. We then set up a single
U-net architecture with three output channels,

Cξ : R512×512 → [0, 1]512×512×3
,

with Cξ(Xk)c ' (Ck)c for k = 1, . . . , N and c = 0, 1, 2.
The one-step architecture is pre-trained for 50 epochs

applying categorical-cross-entropy loss (similar to (II.2))
and fine-tuned for further 30 epochs using the balanced
version of the loss (similar to (II.3)). Balanced loss proved
very useful in detecting the lesion for both methods.

III. Experimental Results
A. Datasets

The network training is run using a subset of the pub-
licly available LiTS-Challenge3dataset containing variable
kinds of liver lesions (HCC, metastasis, . . . ). The dataset
consists of CT scans coming from different clinical in-
stitutions. Trained radiologists have manually segmented

3https://competitions.codalab.org/competitions/17094

annotation of the liver and tumors. All of the volumes
were enhanced with a contrast agent, imaged in the portal
venous phase. Each volume contains a variable number
of axial slices with a resolution of 512 × 512 pixels and
an approximate slice thickness ranging from 0.7 to 5 mm.
The training is applied on 765 axial slices, 50 are used for
validation and 50 for testing.
Further test data is provided by radiological center at

the medical university of Innsbruck. The dataset con-
tains CT scans of patients suffering from HCC and the
belonging reference annotations were drafted by medical
scientists. Because deep learning algorithms achieve better
performance if the data has a consistent scale or distri-
bution, all data are standardized to have intensity values
between [0, 1] before starting the optimization.

Figure III.1: Training data provided by LiTS-challenge.

B. Evaluation on Test Data
Each pixel of the image is assigned to one of the

two classes liver/other tissue and tumor/other tissue,
respectively, with a certain probability. Results of the
automated liver and tumor segmentation are visualized
in Figure III.2. Comparison with ground truth and seg-
mented liver and tumor give rise to the assumption that
our approach is highly promising for obtaining high per-
formance metrics.
To qualitatively evaluate performance, we applied some

of the commonly used evaluation metrics in semantic
image segmentation.

� AUC metric: Area under ROC Curve (AUC) is a
performance metric for binary classification problems.
We applied ROC analysis to find the threshold that
achieves the best results for the tumor segmentation
task. Due to the very low rate of false classified pixels
(most of them has probability close to one or close to
zero), we decided to restrict the ROC curve to pixels
whose probability for belonging to class tumor lies
between 0.01 and 0.99.
In Figure III.4 we can see that the best restricted
AUC value (rAUC) conducting 0.88 is achieved by
applying balanced loss. We further calculated the
corresponding threshold and could achieve an im-
provement of the tumor segmentation results [7].



Figure III.2: Results on HCC data. Top: liver segmen-
tation results (red) compared to ground truth boundary
(blue). The left image pertains to the LiTS-Challenge
dataset, the right one is part of the test set from Innsbruck.
Second row: tumor segmentation result (red) compared
to ground truth (blue) of radiological center in Innsbruck
resulting from the nested network approach described in
Section II-B. Bottom: Segmentation maps preserved by
applying II-D.

� Pixel accuracy: With Pixelacc we denote the frac-
tion of correctly classified pixels.

� Intersection over Union: For a more complete
evaluation of the segmentation results we use class
accuracy in conjunction with the so called IoU metric.
The latter is essentially a method to quantify the
percent overlap between the ground truth and the
prediction output. The IoU measure gives the simi-
larity between predicted and ground-truth regions for
the object of interest. The formula for quantifying the
IoU score is:

IoU = TP
FP + TP + FN (III.1)

where TP, FP and FN denote the True Positive
Rate, False Positive Rate and False Negative Rate,
respectively.

� Rand index: Since the segmentation task can be
regarded as clustering of pixels, Rand index [8],

Figure III.3: Histogram that displays the number of pixels
predicted falling into class tumor with probability p ∈
(0.01, 0.99) (predictions made by the nested network).

Figure III.4: Restricted ROC curves for varying weights α
of weighted and balanced loss. The red curve corresponds
to the outcomes produced by applying balanced loss,
which apparently leads to the best tumor segmentation
results. In general terms it can be stated that setting
the importance of the background pixels lower seems to
considerably improve segmentation accuracy of the lesion.

which is a measure of the similarity between two
data clusterings, has been proposed as a measure of
segmentation performance. Small differences in the
location of object boundaries will increase the rand
error slightly while merging or splitting of objects
leads to a big increase of the Rand error.

The evaluation metrics are summarized in Table IV.1.
The liver segmentation evaluation scores indicate that our
models perform remarkable good, provided that the nested
network outperforms the one-step method primarily in the



Figure III.5: Top: Intersection over Union of liver and
tumor segmentation resulting from the one-step model.
The green area indicates the predicted masks, the orange
area is their overlap and the share highlighted in red, is the
ground truth. Bottom: Intersection over Union of tumor
segmentation for balanced loss with balanced α resulting
from the nested network. The light pink, light blue and
pink areas mark the prediction mask, ground truth and
Intersection over Union, respectively.

tumor segmentation task. Pixel accuracy, Intersection over
union (IoU) and Rand Index (RI) have values very close to
one. IoU and Rand Index performance score of the tumor
segmentation show that the application of balanced loss
with achieves the best results.

IV. Conclusions
In this paper, we proposed a joint deep learning frame-

work for the automated joint liver and tumor (and back-
ground) segmentation using a nested network architecture
and a joint loss function. We compare the nested network
with a one-step segmentation approach that simultane-
ously segments into the three classes. Metrics to evaluate
the segmentation of detected lesions are comprised of a
restricted AUC, an overlap Index (IoU) and Rand Index
(RI). Even when the nested model is trained sequentially,
it clearly outperforms the one-step model. The one-step
network approach works fast but is prone to misclassifi-
cation, especially in the tumor segmentation task. Future
work will be done to develop an accurate minimization
strategy for the joint loss function in (II.1). Another
interesting topic to address is the classification of the
tumors detected by a deep learning algorithm.
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