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Abstract—Recent work on time-resolved imaging (TRI) has shown
that real-world scenes can often be explained by means of sparse time-
domain responses. Direct sampling of such scene responses in the time-
domain requires exorbitant sampling rates posing a practical bottleneck.
An alternative approach uses sinusoidal illumination whereby the phase
difference encodes time delays. When working with multiple frequencies
this allows for directly sampling the Fourier spectrum of sparse scene
responses and this is made possible using a Time-of-Flight (ToF) camera.
Due to hardware restrictions, creating an equidistant set of frequencies is
challenging. In this paper we adopt a nonuniform sampling architecture
and propose an extension of the real-valued IAA (RIAA) algorithm which
sequentially estimates the sparse components. Experimental validation
with both synthetic and real data acquired with a ToF sensor confirms
the feasibility of the proposed approach. This leverages the requirements
on the hardware and paves the way for accurate scene response sensing
with low-cost ToF sensors.

I. INTRODUCTION

Time-resolved imaging (TRI) is an emerging area of research

which exploits the knowledge of time-delays resulting from the

interaction between light and the scene. This form of imaging offers

a new way to see the world. Some examples include non-line-of-

sight imaging [1], [2], multi-depth imaging [3]–[9] and low-cost bio-

imaging [10]. Research on TRI has unveiled that real-world scenes

lead to continuous-time sparse profiles. For any pixel of a TRI system,

the scene response it observes may be modeled as

h(t) =
∑K

k=1
Γkδ(t− tk), tk = 2dk/c, (1)

where tk denotes the time-of-flight (ToF) or the echo generated by an

object at distance dk from the sensor and Γk is the reflectivity. In real-

world scenes K is finite and typically low1. Clearly, sampling such

scenes requires exorbitant samples rates, mainly because (1) is a non-

bandlimited function. Alternatively, sampling the Fourier transform

of h(t) leads to a parametric representation—a weighted sum of

cisoids (cf. measurements in Fig. 1). Estimating parameters of sum

of cisoids is a well studied in the field of spectral estimation theory.

Technologically, this sampling in Fourier domain is accomplished

using time-of-flight (ToF) sensors [11].

Since the advent of low-cost ToF-based depth cameras, mass-

produced and oriented to the entertainment market, the field of ap-

plication of this technology has undergone an impressive expansion.

These and similar sensors have triggered a considerable amount of

novel research on 3D sensing, indoor mapping, robot navigation,

SLAM, etc. Despite the large improvements in terms of accuracy and

resolution, ToF sensors suffer from a number of known disadvantages

that preclude their application in real-world environments.

ToF cameras probe the scene with modulated light and compute a

single depth value per pixel from the received scene reflection. It is

clear that the underlying hypothesis is that each pixel receives a single

bounce, arising from a single scatterer in the scene. If this does not

hold and the light signal reaching the ToF pixel is the sum of two or

more reflected signals following different return paths the problem of

1This is because inter-reflections follow the inverse-square law.
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Fig. 1: Original uniformly-sampled raw data from a ToF pixel in

frequency domain (blue stems) and data reconstruction using the

parameters estimated by the nested-RIAA approach proposed in this

paper (black curve) from a nonuniform sub-set of data. Only 40%

samples were considered (red stems). The mean squared error in

reconstruction is 0.0017.

multi-path interference or MPI arises and the depth estimate given by

the ToF sensor will be erroneous. In order to maximize signal-to-noise

ratio, most ToF systems [12] operate with sinusoidal illumination2.

Under the single-bounce hypothesis, that is, h (t) = Γ0δ (t− t0),
a single frequency suffices to estimate 2 unknowns {Γ0, t0}. This

is efficiently implemented on the hardware using the Four Bucket
Method reviewed in Section III. Clearly, when K > 1, multiple

echoes become indistinguishable with a single frequency setup. To

overcome this problem, multi-frequency approaches have been devel-

oped in literature [5], [6]. These approaches rely on a dense uniform

sampling in frequency domain and require customized hardware.

Here, we advocate a different idea— use of nonuniform frequency

spacing which leads to nonuniform sampling in the Fourier domain.

There are several reasons that favor this approach.

• In practice, periodic signals are constructed by frequency divi-

sion of a single clock frequency. The implication is that some

frequencies can be achieved exactly, while some others cannot.

• Depending on the quality of the electronics, additional jitter may

appear due to electromagnetic interference and crosstalk leading

to imperfections in uniform sampling lattices.

• From a hardware perspective, lower frequencies tend to be more

stable than higher frequencies.

Motivated by the practicalities around the ToF hardware, in this

paper we propose a new approach that is based on nonuniform

sampling in the Fourier domain. The key idea is to resolve multiple

echoes using a set of nonuniformly distributed frequencies. By means

of simulations using both synthetic and real data from a ToF camera

we show that multiple echoes can be estimated from very reduced

sets of nonuniform samples in frequency domain. Fig. 1 illustrates

the performance of the proposed approach, which is able to estimate

2In ToF jargon, this is known as Amplitude Modulated Continuous Wave
(AMCW) mode. Furthermore, the modulation is assumed to be quasi-
sinusoidal, being the effects of eventual harmonic distortion often calibrated
a posteriori in depth domain.



the unknown parameters in (1) from few nonuniform samples (in

red), thus enabling an accurate parametric representation of the data

(in black).

II. RELATED WORK

In this work we are interested in estimating several paths per

pixel, thus eliminating the need for a subsequent computationally-

expensive multipath-removal procedure. Furthermore, we restrict our

attention exclusively to reflective multipath, arising from translucent

objects and shiny surfaces, such as floors, mirrors, whiteboards, walls,

windows, tables, metallic surfaces, etc. For K = 2, [4], [8] provide

closed-form solutions. Alternatively, in [7] the multiple paths are

retrieved by means of an optimization process. The methods in [7],

[8], and [4] cope with only two paths per pixel and require two,

three and five frequencies, respectively. If more than two bounces

interfere within the same pixel, none of the previous approaches

apply. Note that if the phase or depth domain is finely discretized,

the few targets producing the MPI can be modeled as a sparse
vector of reflectances and the multipath estimation problem can be

attacked from a compressive sensing (CS) perspective [13]–[15]. This

is the focus adopted in [5], where this sparse vector is recovered

from partial Fourier measurements in a classical CS framework.

Unfortunately, the method seems to require a large number of

modulation frequencies in practice (77 for known sparsity of 3). A

more feasible approach is provided in [6], where k interfering paths

are estimated from 2k + 1 frequency measurements in a closed-

form manner. In an evaluation with real data from an Xbox One

sensor this method required 21 measurements to separate two paths.

The frequency-domain framework in [3] allows separating multiple

paths at the cost of an unaffordable modulation bandwidth of the

illumination system (e. g., 10GHz for 3.6 cm depth resolution).

III. FROM TOF SENSORS TO FOURIER SAMPLES

We have already stated that the scene response function in (1)

is to be sensed in Fourier domain by means of a ToF camera.

Now it remains to clarify how a ToF camera gathers these Fourier

measurements [5]. ToF cameras are active devices, that is, they emit

light onto the scene. The emitted light is modulated in amplitude

and, in order to perform Fourier sensing, this modulation will be

sinusoidal. Thus the signals the camera emits s(t) and receives r(t)
are (under the single-path assumption) of the shape

s(t) = 1 + s0 cos (ωt)

r(t) = Γ (1 + s0 cos (ωt− φ)) , φ = ωt0
(2)

where s0 is the modulation depth and Γ the amplitude of the reflected

signal, which is delayed by a phase φ w.r.t. s(t). The distance between

camera and reflector is then d = cφ/(2ω), where c is the speed of

light. Furthermore, the integration process at the ToF pixels is also

regulated, typically by the same signal used to modulate the light.

Consequently each pixel behaves as a homodyne detector and its

measurements can be explained as samples of the cross-correlation

between the reference signal and the received signal:

cω[q] = (s � r)(τq) = lim
T→∞

1

2T

∫ T

−T

s∗(t+ τq)r(t)dt

= Γ

(
1 +

s20
2

cos (ωτq + φ)

)
.

(3)

Using the well-known Four Bucket Method both unknown param-

eters, Γ and φ, can be estimated from four samples of cω[q] at

τq = πq/(2ω), q = 0, . . . , 3. This is done by constructing a complex

number, zω = (cω [0]− cω [2]) + j (cω [3]− cω [1]). The unknowns

Γ and φ = ωt0 are estimated using,

Γ̃ = |zω| /s20 and φ̃0 = ∠zω. (4)

Thus the associated complex measurement reads:

y(ω) = Γ̃ejφ̃ω, (5)

which is indeed the Fourier representation of a spike.

IV. TIME-OF-FLIGHT SENSING AND SPECTRAL ESTIMATION

As sketched in Section I, our goal is to estimate more than a single

depth per pixel of a ToF camera operating under MPI conditions.

To this end, measurements are carried out probing the scene with

light signals in AMCW mode. Each probing signal is considered to

be quasi-sinusoidal, with negligible harmonic distortion. Differently

from prior work, where the measurements were obtained according

to a uniform grid in frequency domain, we shift to a more general

setting, where the sampling points in frequency domain are arbitrarily,

e.g. , pseudo-randomly distributed. This is a physically-motivated

scenario and enables a better adaptation to the specific ToF hardware

capabilities by eliminating the artificial uniform-sampling restriction.

For completeness, note that multipath can be classified between

diffuse and reflective. The first occurs due to light scattering, e.g. , due

to Lambertian-reflective objects that are too close to the camera, in

combination with low-quality optics. Scattering media, such as turbid

water or translucent objects, may also produce diffuse multipath. In

this work we restrict our attention to the second type, which arises

from strong secondary reflections, e.g. , caused by shiny floors or

walls, which produce a secondary illumination front for the rest of the

scene. In this scenario, and supposing that we deal with K interfering

paths, being K a low number, typically K ≤ 3, the aim is to estimate

a set of parameters {Γk, dk}Kk=1, which uniquely define the scene

response function [11], [16], which in time domain can be written as

in (1).

As pointed out in [11], [16] and references therein, the measure-

ments of a ToF pixel operating in AMCW mode with sinusoidal

modulation can be seen as samples of the Fourier transform of h(t),
formally:

y(t, ω) =
1

2
ejωt

∑K

k=1
Γke

+jωtk =
1

2
ejωtĥ∗(ω),

with ĥ(ω) =
∑K

k=1
Γke

−jωtk

(6)

where ĥ(ω) denotes the Fourier transform of h(t). Both parameters

t and ω can be adjusted in a ToF camera in order to obtain the

desired measurements y(t, ω), the latter by setting the modulation

frequency and the former by adjusting the delay between the signals

for light modulation and pixel demodulation. In mono-frequency

ToF ω is fixed to a frequency that is upper constrained by either

the minimum unambiguous range or by bandwidth limitations of

the illumination system and the ToF pixels and measurements are

performed in time delay, i.e. , phase shift, domain. Differently, in the

case of multi-frequency ToF measurements are gathered in frequency

domain for different values of ω, while t is left constant, eventually

zero after appropriate calibration. In the latter case the measurements

are directly the (conjugated) Fourier coefficients y(ω) = ĥ∗(ω).
Let {ωi}mi=1 be the set of frequencies at which measurements are

acquired and {yi}mi=1 the set of measurements yi = y (ωi). The task

of resolving the unknown parameters {Γk, dk}Kk=1 from the set of

spectral samples {yi}mi=1 is a classical spectral estimation problem.

To date the literature on ToF MPI estimation from frequency

measurements used a regular sampling grid, that is a set of Fourier
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(c) Pixel 3

Fig. 2: Normalized RMSE of the reconstructed data using the matrix pencil method and uniform sampling in frequency domain (red line)

and using the nested RIAA with nonuniform sampling in frequency domain. Mean values and standard deviations were obtained over 64
experimental runs with randomly-generated nonuniform sampling patterns. The data was collected from three different ToF pixels.
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Fig. 3: Phase RMSE of nested RIAA for different separations between targets and different sampling schemes in frequency domain. Both

separations and errors are given in phase domain, where 2π corresponds to an unambiguous range of 15m, due to the minimum frequency of

10MHz. Mean and standard deviations were obtained over 64 experimental runs with different scene responses. For each plot, all randomly-

generated scene responses showed two reflective targets, restricted to be at the desired separation from one another. The three sampling

schemes considered are random selection on a regular grid (blue line), uniform sampling using a regular grid of the desired size (red line)

and pure nonuniform sampling, without grid (yellow line).

harmonics ωi = iω0, i = 1, . . . ,m. Uniform sampling allows using

very fast parametric spectral estimation methods, like those based on

Prony’s method. This was the approach adopted in [6], [16], [17],

where the matrix pencil method [18] was used to tackle the very

same problem. If enough uniform frequency samples are available,

even a simple inverse FFT followed by peak detection may suffice

to find the main cisoid components of the data.

A. Nonuniform Sampling

If we are to deal with arbitrary sets of sampling points {ωi}mi=1

methods relying on uniform sampling no longer apply and we have

to resort to nonuniform spectral estimation methods. It is out of the

scope of the paper to provide a review on nonuniform spectral estima-

tion methods and we focus exclusively on Stoica’s Iterative Adaptive

Approach (IAA) [19], which has shown to provide superior results

among comparable approaches. Note that the measurements delivered

by the ToF hardware are not complex, but real and, depending on

the ToF pixel, it may require two physical acquisition to obtain the

complex measurements in (6), using different phase shifts. For this

reason, the real-valued IAA (RIAA) [20] is specially appealing for

our application. In this paper we adopt RIAA to estimate the unknown

parameters from the real (or the imaginary) part of (6) measurements

that are nonuniformly distributed in frequency domain. Both IAA and

RIAA have shown to widely outperform simpler approaches, such as

the (nonuniform) Fourier transform, the least-squares periodogram or

the Schuster periodogram. The latter approaches suffer from massive

leakage and exhibit multiple false peaks, while the former are able

to yield a clean spectrogram with peaks at the right locations.

1) Nesting the RIAA method: In working with experimental data

we have observed that RIAA fails to estimate some of the smallest

spectral components in the signal. In such cases we observed that,

despite a peak appears at the right spectral location, a more prominent

false peak appearing close to the main component is wrongly selected

instead. Nevertheless, the main component is always very accurately

recovered. For this reason and due to the typically low number

of interfering paths in the ToF case, we propose applying RIAA

recursively in a nested manner, estimating only the parameters of

the main sinusoidal component in the data at a time. After the main

component is estimated by RIAA, it is removed from the data and

the RIAA runs again on the residual in an OMP fashion. This process

is repeated K times, that is, as many times as sinusoidal components

are expected in the data. Summarizing:

1) Initialize residual: 	r = 	y = [yi]
m
i=1.

2) Run RIAA on 	r and obtain the main sinusoidal component.

3) Subtract the main sinusoidal component from 	r.

4) Return to step 2 until K iterations have taken place.

We have observed that the nested RIAA yields much more accurate

estimates of the parameters in practice.

V. RESULTS

In this section we present some experimental results, both us-

ing simulated and real data from pixels of a ToF camera, which

demonstrate the feasibility of solving the MPI problem from a set of

nonuniform frequency measurements. The nested-RIAA approach in-



troduced in Section IV will be used as nonuniform spectral estimation

method for estimating the unknown parameters {Γk, dk}Kk=1.

A. Results using real data

For the experiments in this section we use a subset of the

dataset used in [5], [11], which consists of 77 complex frequency

measurements between 10MHz and 86MHz (both included) with

1MHz step, acquired with a ToF camera featuring a PMD 19k-

S3 sensor. Provided that the samples are uniform, the matrix pencil

method can be readily applied to them. Doing so the parameters

are indeed correctly estimated. In order to evaluate the effect of

dropping samples and the feasibility of the nonuniform sampling

scheme, we consider different subsampling ratios in (0, 1]. For the

nested-RIAA we randomly pick subsets of samples from the dataset.

In order to allow for a fair comparison, for the matrix pencil method

we select a subset containing the lowest-frequency measurements.

Figure 2 shows the normalized RMSE of the reconstructed data using

the parameters estimated by the two methods for three ToF pixels.

The scene response functions contained three targets in all cases.

Clearly, for the same number of samples, nonuniform sampling and

nested-RIAA estimation is superior to classical uniform sampling and

estimation via the matrix pencil method.

B. Results using synthetic data

In this section we evaluate the performance of nested-RIAA

in distinguishing two targets at different distances between them.

The fundamental frequency, defining the unambiguous range in the

uniform sampling case, is set to 10MHz and the bandwidth of the

measurement system to 100MHz. Three different sampling schemes

are considered. Figure 3 shows the results obtained for target separa-

tions of 2π/2r , r ∈ {1, . . . , 4}, in phase domain for the fundamental

frequency. The method exhibits good average performance for the

range of target separations considered. All sampling schemes (see

figure caption for details) seem to yield similar average performance

for resolving two targets.

VI. CONCLUSION AND FUTURE WORK

In this paper we have tackled the problem of estimating a sparse

scene response function from a set of nonuniform frequency mea-

surements. The problem naturally arises in ToF imaging, where

nonuniformity of the sampling relates to physical limitations. A

thorough experimental evaluation with both synthetic and real data

from a ToF camera provides a solid evidence of the feasibility

of the approach. To the best of our knowledge this is the first

work attempting to tackle the ToF MPI problem using nonuniform

frequency sampling.

In future work we will consider a larger set of nonuniform spectral

estimation methods to solve the problem of estimating sparse scene

responses from nonuniform Fourier samples, including parametric

and semi-parametric (sparsity-driven) methods. We will also consider

further analysis of sampling bounds and study the applicability of

nonuniform spectral estimation methods to cases where the sampling

lattices are prefixed by the hardware. One further application case we

will tackle in future work that is close to ToF imaging is fluorescence

lifetime imaging microscopy (FLIM).
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