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Abstract—The diffusion maps is a kernel based method for
manifold learning and data analysis that models a Markovian
process over data. Analysis of this process provides meaningful
information about the inner geometric structures in the data.

In this paper, we present a representation framework for
analyzing datasets. This framework is based on a random approx-
imation of the diffusion maps kernel. The resulted representation
approximate the pair-wise diffusion distance, does not depend on
the data size and it is invariant to scale.

I. INTRODUCTION

Kernel methods constitute a wide class of algorithms for
nonparametric data analysis of massive high dimensional
datasets. Typically, a limited set of underlying factors gen-
erates the high dimensional observable parameters via non-
linear mappings. The nonparametric nature of these meth-
ods enables to uncover hidden structures in the data. These
methods extend the well known MDS [4]method. They are
based on an affinity kernel construction that encapsulates
the relations (distances, similarities or correlations) among
multidimensional data points. Spectral analysis of this kernel
provides an efficient representation of the data that simplifies
its analysis. Methods such as Isomap [15], LLE [9], Laplacian
eigenmaps [1], Hessian eigenmaps [6] and local tangent space
alignment,extend the MDS paradigm by considering the man-
ifold assumption. Under this assumption, the data is assumed
to be sampled from a low intrinsic dimensional manifold that
captures the dependencies between the observable parameters.
The corresponding spectral embedding spaces in these meth-
ods preserve the geometry of the manifold, which incorporates
the underlying factors of the data.

The diffusion maps (DM) method [3] is a kernel-based
method that models and analyzes a Markovian process over
the data. It defines a transition probability operator based on
local affinities between the multidimensional data points. By
spectral decomposition of this operator, the data is embedded
into a low dimensional Euclidean space, where distances
represent the diffusion distances in the original space. When
the data is sampled from a low dimensional manifold, the
diffusion paths follow the manifold and the diffusion distances
capture its geometry.

The DM embedding was utilized in a wide variety data
and pattern analysis techniques. For example it was used
to improve audio quality by suppressing transient interfer-
ence [14]. It was utilized in [12] for detecting moving ve-

hicles. Additionally, gene expression analysis [10] and source
localization [13]. Furthermore, the DM method can be utilized
for fusing different sources of data [7].

In general, kernel methods can provide a representation of
the given data via a spectral decomposition. However, this
representation changes as the data size grows and prone to
reordering and sign change inflicted from the spectral decom-
position. Furthermore, the required computational complexity,
which is dictated by the spectral decomposition, is O(n3) that
is not feasible for a very large dataset. Recently, a closed form
representation was developed for the measure-based Gaussian
correlation (MGC) kernel in [2], [11].

In this paper, we extend the result from [11] to com-
pute a representation that preserves the diffusion distances
between data points based on the DM framework [3].This
representation is applicable for very large datasets. It utilizes a
Markovian diffusion process to define and represent nonlinear
relations between data points. It provides a diffusion distance
metric that correlates with the intrinsic geometry of the data.
The suggested representation is invariant to the dataset size
and cost O(1) operations per a given data point.

II. PROBLEM FORMULATION AND MATHEMATICAL
PRELIMINARIES

Consider a big dataset X ⊆ Rm such that for any practical
purposes the size of X is considered to be infinite. Without-
loss-of-generality, we assume that for all x ∈ X , ‖x‖ ≤ 1.
Implementation of a kernel method, which uses a full spectral
decomposition, becomes impractical when the dataset size is
big. Instead, we suggest to represent the given dataset via the
density of data points in it using the standard DM kernel. In
other words, let q : Rm → [0, 1] be the density function of
X . We aim to find an explicit embedding function denoted by
fq : Rm → Rk, where k is the embedding dimension such
that m� k. Each member in fq , which is denoted by fq(x),
x ∈ X , depends on the density function q.

DM provides a multiscale view of the data via a family
of geometries that are referred to by diffusion geometries.
Each geometry is defined by both the associated diffusion
metric and the diffusion time parameter t that are linked by
d
(t)
ε : X ×X → R+ where ε is a localization parameter. The

diffusion maps are the associated functions Ψ (t) : X → Rk
that embed the data into Euclidean spaces, where the diffusion



geometries are preserved such that ‖Ψ (t)(x) − Ψ (t)(y)‖ ≈
d
(t)
ε (x, y), x, y ∈ X .
Given an accuracy requirement ζ > 0, we aim to design an

embedding fq that preserves the diffusion geometry for t = 1
such that for all x, y ∈ X ,∣∣∣‖fq(x)− fq(y)‖ − d(1)ε (x, y)

∣∣∣ ≤ ζ. (II.1)

We call the embedding fq the diffusion representation. From
the requirement in Eq. (II.1), the Euclidian distance between
pairs of representatives approximates the diffusion distance
between the corresponding data points over the density of
these data points in the DM kernel when t = 1. If Eq. (II.1)
holds, then fq preserves the diffusion geometry of the dataset
in this sense.

The rest of this section is dedicated to provide additional
details regarding the diffusion geometries that utilize the DM
kernel.

A. Diffusion geometries

A family of diffusion geometries of a measurable space
(X,µ) with a measure µ is determined by imposing a Markov
process over the space. Given a non-negative symmetric kernel
function kε : X ×X → R+, then an associated Markov pro-
cess over the data via the stochastic kernel pε : X×X → R+

is
pε(x, y) , kε(x, y)/νε(x), (II.2)

where νε : X → R is the local volume function. In a discrete
setting, it is called the degree function. In a continues settings,
the local volume function is defined by

νε(x) ,
∫
X

kε(x, y)dµ(y). (II.3)

The associated Markovian process over X is defined via
the conjugate operator of the integral operator Pq(x) =∫
X
pε(x, y)q(y)dµ(y) that is denoted by P ∗. Thus, for any

initial probability distribution q0 over X , q1 = P ∗q0 is the
probability distribution over X after a single time step. The
probability distribution over X after t time steps is given by
the t-th power of P ∗. Specifically, if the initial probability
measure is concentrated in a specific data point x ∈ X , i.e.
q0 = δ(x), then the probability distribution after t time steps
is (P ∗)tδ(x), denoted also by p

(t)
ε (x, ·). Thus, p(t)ε (x, y) is

the probability that a random walker, which started his walk
in x ∈ X , will end in y ∈ X after t time steps. Based on
this, the t-time diffusion geometry is defined by the distances
between probability distributions such that for all x, y ∈ X

d(t)ε (x, y) ,
∥∥∥p(t)ε (x, ·)− p(t)ε (y, ·)

∥∥∥
L2(Rm)

. (II.4)

Equations II.1 and II.4 suggest that the embedding fq(x)
approximately preserves (for t = 1) the distance between
probability distributions. Such a family of geometries can be
defined for any Markovian process and not necessarily for
a diffusion process. It is proved in [3] that under specific
conditions, the defined Markovian process approximates the

diffusion over a manifold from which the dataset X is sam-
pled. If the Markovian process is ergodic, then it has a unique
probability distribution ν̂ε : X → R+, to which it converges
independently of its initial distribution, namely, for any y ∈ X ,
ν̂ε(y) = limt→∞ p

(t)
ε (x, y), independently of x. This proba-

bility measure is an L1 normalization of the local volume
function (Eq. (II.3)), i.e. ν̂ε(y) = νε(y)/

∫
X
νε(y)dµ(y).

B. Measure-based DM kernel

Mathematically, for the analyzed domain X ⊂ Rm and for
the measure domain M ⊂ Rm with a density function q :
M → R+ defined on the measure domain, the DM kernel
kε : X ×X → R+ is defined as

kε(x, y) , gm(r;x, εIm), (II.5)

where Im is an m ×m unit matrix. For a fixed mean vector
θ ∈ Rm and a covariance matrix Σ ∈ Rm×m, gm(r; θ,Σ) :
Rm → R+ is the normalized Gaussian function given by

gm(r; θ,Σ) ,
1

(2π)m/2 |Σ|1/2
exp

{
−1

2
(r − θ)TΣ−1(r − θ)

}
.

(II.6)
Since the DM kernel in Eq. (II.5) is symmetric and positive, it
can be utilized to establish a Markov process as was described
in Section II-A. The associated diffusion parameters from
Eqs. (II.2) , (II.3) and (II.4) are pε, νε and d(t)ε , respectively.

III. EXPLICIT FORMS FOR THE DIFFUSION DISTANCE AND
STATIONARY DISTRIBUTION

In general, the integral in Eq. (II.5) does not have an explicit
form. However, for our purposes, we adopt the Gaussian
Mixture Model (GMM), which assumes that the density q is a
superposition of normal distributions. Under this assumption,
q takes the form

q(r) =

n∑
j=1

ajgm(r; θj , Σj),

n∑
j=1

aj = 1, (III.1)

for appropriate mean vectors θj and covariance matrices Σj ,
j = 1, . . . , n, (see Eq. (II.6)). Estimating Eq. (III.1) is a gen-
erally known problem that has been extensively investigated
such as in [5], [8] with many published implementations. Such
an estimation enables to provide an explicit (closed form)
representation of the diffusion geometry in Eq. (II.4).

First, a closed form for the inner product Wx,z =

〈p(1)ε (x, ·), p(1)ε (z, ·)〉L2(Rk), x, z ∈ X , is presented. This inner
product closed form enables to get an explicit formulation
for the first time step of the DM distance d

(1)
ε (x, z). This

formalism is established in Theorem III.1.

Theorem III.1. Assume that the GMM assumption in
Eq. (III.1) holds. Then, for any x ∈ X , the stationary
distribution νε(x) have explicit forms given by

νε(x) =

n∑
j=1

ajgm(x; θj , εIm +Σj) (III.2)



Proof. by definition of the stationary distribution we have

νε(x) ,
∫
X
kε(x, y)dµ(y). (III.3)

=
∫
X
gm(x; y, εIm)q(y)dy

=
∫
X
gm(x; y, εIm)

∑n
j=1 ajgm(y; θj , Σj)dy

=
∑n
j=1

∫
X
gm(x; y, εIm)ajgm(y; θj , Σj)dy

=
∑n
j=1 ajgm(x; θj , εIm +Σj)

Combination of Theorem III.1 with Eqs. (II.2), (II.3) and
(II.4) formulate the first time step (t = 1) diffusion metric as

d(1)ε (x, z) =
Wx,x

νε(x)νε(x)
+

Wz,z

νε(z)νε(z)
− 2Wx,z

νε(x)νε(z)
. (III.4)

IV. RANDOMIZED DIFFUSION MAPS OF THE ANALYZED
DOMAIN

The diffusion distance provides a relation between pair of
data points in the analyzed domain. In this section, we find a
representation of any data point in the analyzed domain that
preserves the diffusion distance relation.

let Wx,z be the inner product Wx,y ,
〈kε(x, ·), kε(z, ·)〉L2(Rk). Then, for any x, z ∈ X we
have,

Wx,z ,
∫
X
pε(x, y)pε(z, y)q(y)dy (IV.1)

= 1
νε(x)νε(z)

∫
X
kε(x, y)kε(z, y)q(y)dy.

However, the integral form in Eq. IV.1 can be reformulated as
the expectation operator,

1
νε(x)νε(z)

∫
X
kε(x, y)kε(z, y)q(y)dy (IV.2)

= Eq(y)kε(x, y)kε(z, y),

where the expectation is over the stationary distribution q.
Using the expectation in Eq. IV.2, the inner product Wx,z can
be approximated using a random sample from q as,

Eq(y)kε(x, y)kε(z, y) (IV.3)

≈ 1
L

∑L
l=1 kε(x, yl)kε(z, yl),

where yi, 1 ≤ i ≤ L are L random samples (with distribution
q) from X . The approximation in Eq. IV.3 can be reformulated
as the inner product,

≈ 1

L

L∑
l=1

kε(x, yl)kε(z, yl) = φ(x)Tφ(z), (IV.4)

where φ(x) = 1√
L
[kε(x, y1), ..., kε(x, yL)], yl ∼ q, 1 ≤

l ≤ L. The vector fq(x) = φ(x) is the embedding of the
data point x into a space that approximatly preserve the inner
product Wx,z and hence approximatly preserves the diffusion
geometry.

The approximation error is given by,

ζ ,

∣∣∣∣∣ 1L
n∑
i

p(x, yi)p(z, yi)−
∫
X

p(x, y)p(z, y)dy

∣∣∣∣∣ (IV.5)

. We would like to bound the probability of ζ to be larger than
some confidence η. Introducing the sampled integral and its
average into the Chebyshev’s inequality gives

P(ζ ≥ η) (IV.6)

≤ σ( 1
L

∑L
i p(x,yi)p(z,yi))

2

η2 ,

Using Bienaym formula for variance of the sum of uncorre-
lated samples we get

P(ζ ≥ η) ≤ σ(p(x, yi)p(z, yi))
2

Lη2
. (IV.7)

Lets look at the term p(x, yi)p(z, yi). This term by definition
can formulated as

p(x, yi)p(z, yi) =
1

νε(x)
kε(x, y)

1

νε(z)
kε(z, y) ≤ 1. (IV.8)

Hence, the variance is bounded by 1 and the first coarse bound
we have is given by P(≥ k) ≤ 1

Lη2 .

V. EXPERIMENTAL RESULTS

This section demonstrate the principles of the DM closed-
form embedding. The following example presents an analysis
of a density function for which the stationary distribution is
analytically known. The closed-form stationary distribution in
this case is compared to the analytical stationary distribution.

Let the density function q(r) ∈ R2 includes two flat squares
with probability 1

5 to draw samples from the lower square and
4
5 to draw samples from the upper square. In other words,

q (r) =
1

5
χ[0,1]×[0,1](r) +

4

5
χ[3,4]×[3,4](r) (V.1)

where χ[a,b]×[c,d] is the indicator function for the square abcd.
Eq. II.3 formulate the stationary distribution computation.
Given ε = 1, the integration in Eq. II.3 can be analytically
solved as

ν (x1, x2) = 0.2H(0, 1, x1, x2) + 0.8H(3, 4, x1, x2), (V.2)

where H(a, b, x1, x2) is a given by H(a, b, x1, x2) =
1
4 (erf(b− x1)− erf(a− x1)) (erf(b− x2)− erf(a− x2)),
and erf(x) is the Gauss error function.

Given a properly trained GMM, the stationary distribution
is computed using Eq. III.2. First, 2000 data points were ran-
domized from the distribution in Eq. V.1. Then, A 1000×1000
grid was constructed to compute the stationary distribution via
Eq. III.2 and based on the analytical solution in Eq. V.2.



(a) Analytical stationary distribution

(b) Closed-form stationary distribution

(c) The error

Fig. V.1. Comparing between the closed-form stationary distribution and
the analytical stationary distribution. (a) Analytical stationary distribution. (b)
Closed-form stationary distribution. (c) The error.

Figure V.1(b) present the stationary distribution with minor
distortion compared to Figure V.2(a). The error, which is
presented in Figure V.1(c), is a result of the GMM training
over a small set of data points. The difference is in the order
of 5% and is the result of the GMM training error. The full
paper will contain two more examples that demonstrate both
the distance preservation and an application on real data.

Figure V.2 present the comulative distribution function
(CDF) of the diffusion distance error between Eq. II.4 and
its corresponding approximation that is based on introducing
Eq. IV.4 into Eq. III.4. For the comparison we randomized
L = 102, 103, 104 samples from X to find φ(x). The results in
Fig. V.2 suggest that for each two order of magnitude increase
in L an order of magnitude in accuracy is achieved. Hence,
the proposed method is more appropriate where the diffusion
distance is desired but low dimensionally is not necessary for

(a) Diffusion distance Approximation error CDF

Fig. V.2. Diffusion distance approximation error CDF for L = 102, 103, 104

the analysis.
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