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Abstract—In Analog-to-digital (A/D) conversion, sig-
nal decimation has been proven to greatly improve the
efficiency of data storage while maintaining high accuracy.
When one couples signal decimation with the Σ∆ quantiza-
tion scheme, the reconstruction error decays exponentially
with respect to the bit-rate. We build on our previous
result, which extends signal decimation to finite frames
up to the second order. In this study we introduce a new
scheme called adapted decimation, which yields polynomial
reconstruction error decay rate of arbitrary order with
respect to the oversampling ratio, and exponential decay
rate with respect to the bit-rate.

I. INTRODUCTION

A. Signal Quantization

Analog-to-digital (A/D) conversion is a process
where bandlimited signals, e.g., audio signals, are dig-
itized for storage and transmission, which is feasible
thanks to the classical sampling theorem. In particular,
the theorem indicates that discrete sampling is sufficient
to capture all features of a given bandlimited signal,
provided that the sampling rate is higher than the Nyquist
rate.

Given a function f ∈ L1(R), its Fourier transform
f̂ is defined as

f̂(γ) =

∫ ∞
−∞

f(t)e−2πıtγ dt.

The Fourier transform can also be uniquely extended to
L2(R) as a unitary transformation.

Definition I.1. Given f ∈ L2(R), f ∈ PWΩ if its
Fourier transform f̂ ∈ L2(R) is supported in [−Ω,Ω].

An important component of A/D conversion is the
following theorem:

Theorem I.2 (Classical Sampling Theorem). Given f ∈
PW[−1/2,1/2], for any g ∈ L2(R) satisfying
• ĝ(ω) = 1 on [−1/2, 1/2]
• ĝ(ω) = 0 for |ω| ≥ 1/2 + ε,

with ε > 0 and T ∈ (0, 1− 2ε), t ∈ R, one has

f(t) = T
∑
n∈Z

f(nT )g(t− nT ), (1)

where the convergence is both uniform on compact sets
of R and in L2(R).

However, the discrete nature of digital data stor-
age makes it impossible to store exactly the samples
{f(nT )}n∈Z. Instead, the quantized samples {qn}n∈Z

chosen from a pre-determined finite alphabet A are
stored. This results in the following reconstructed signal

f̃(t) = T
∑

qng(t− nT ).

As for the choice of the quantized samples {qn}n, we
shall discuss the following two schemes.
• Pulse Code Modulation (PCM):

Quantized samples are taken as the direct-roundoff
of the current sample, i.e.,

qn = Q0(f(nT )) := arg min
q∈A

|q − f(nT )|. (2)

• Σ∆ Quantization:
A sequence of auxiliary variables {un}n∈Z is in-
troduced for this scheme. {qn}n∈Z is defined re-
cursively as

qn = Q0(un−1 + f(nT )),

un = un−1 + f(nT )− qn.
Σ∆ quantization was introduced in 1963 [13] and

is still widely used, due to some of its advantages over
PCM. Specifically, Σ∆ quantization is robust against
hardware imperfection [8], a decisive weakness for PCM.

As its direct generalization, given r ∈ N, one can
consider an r-th order Σ∆ quantization scheme:

f(nT )− qn = (∆ru)n,

where, given {vn}n∈Z, (∆v)n = vn − vn−1. Higher
order Σ∆ quantization has been known for a long time
[6], [11], and it improves the error decay rate from linear
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to polynomial degree r while preserving the advantages
of a first order Σ∆ quantization scheme.

B. Signal Decimation

Given an r-th order Σ∆ quantization scheme, there
exist {qTn }, {un} such that

f(nT )− qTn = (∆ru)n, (3)

where ‖u‖∞ <∞. Then, consider

q̃T0
n := (Srρq

T )(2ρ+1)n, (4)

a sub-sampled sequence of Srρq
T , where (Sρh)n :=

1
2ρ+1

∑ρ
m=−ρ hn+m.

The process where we convert the quantized samples
{qTn } to {q̃T0

n } is called signal decimation. See Figure 1
for an illustration of decimation.

Decimation has been known in the engineering com-
munity [3], and it was observed to result in exponential
error decay with respect to the bit-rate, even though the
observation remained a conjecture until 2015 [9], when
Daubechies and Saab proved the following theorem:

Theorem I.3 (Signal Decimation for Bandlimited
Functions, [9]). Given f ∈ PW1/2, T < 1, and
T0 = (2ρ+ 1)T < 1, there exists a function g̃ such that

|f(t)− T0

∑
q̃T0
n g̃(t− nT0)| ≤ Cr‖u‖∞

( T
T0

)r
=: D,

(5)
where q̃T0

n is defined in (4), and C depends on neither
T nor T0. Moreover, the number of bits needed for each
unit interval is

1

T0
log2((2ρ+ 1)r + 1) ≤ 1

T0
log2

(
2

(
T0

T

)r)
=: R.

(6)
Consequently,

D(R) = 2CΣ∆C
r2−T0R.

In [14], the author made an extension of decimation
to finite frames, and the basic terminology of quantiza-
tion for finite frames will be introduced below.

C. Quantization for Finite Frames

Fix a Euclidean space Ck, a collection of vectors
E = {ej}mj=1 is a frame for Ck if for any x ∈ Ck, there
exists A,B > 0 such that A‖x‖22 ≤

∑
j |<x, ej>|2 ≤

B‖x‖22. The largest possible A is the lower frame bound
of E. Consider an m-by-k matrix with {e∗j}j as its rows.
With abuse of notation, we also denote it as E. Then,
given x ∈ Ck, the r-th order Σ∆ quantization satisfies

Ex− q = ∆ru

Samples {yn}

Quantized sample {qn} (un � un�1)

Averaged samples {q̃n} (
un+⇢�un�1�⇢

⇢ )

Decimated Sub-samples q̃⇢n (
ũ⇢

n�ũ⇢
n�1

⇢ )

⌃� Quantization: y � q = �u

.
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Figure 1: Illustration of the first order decimation
scheme. After obtaining the quantized samples {qn}n,
decimation takes the average of quantized samples
within disjoint blocks. Such outputs are used as the
decimated sub-samples {q̃ρn}. The effect on the recon-
struction (replacing qn with yn − qn) is illustrated in
parentheses.

with q, u ∈ Cm, and ∆ ∈ Cm×m is the backward
difference matrix, with 1 on the diagonal entries, and −1
on the sub-diagonal entries. Using the alternative deci-
mation operator, it is proven that up to the second order
sigma-delta quantization, results similar to Theorem I.3
can be achieved:

Definition I.4 (Alternative Decimation). Given fixed
m, ρ ∈ N, the (r,m, ρ)-alternative decimation operator
is defined to be DρS

r
ρ , where

• Sρ = S+
ρ −S−ρ ∈ Rm×m is the integration operator

satisfying

(S+
ρ )l,j =

{ 1
ρ if l ≥ ρ, l − (ρ− 1) ≤ j ≤ l
0 otherwise,

(S−ρ )l,j =

{ 1
ρ if l ≤ ρ− 1, j ∈ [l + 1,m− ρ+ l]

0 otherwise,

and
• Dρ ∈ Nη×m is the sub-sampling operator satisfying

(Dρ)l,j =

{
1 if j = ρ · l
0 otherwise,

where η = m/ρ.

Definition I.5 (Unitarily Generated Frames (UGF)).
Given a base vector φ0 ∈ Ck and a Hermitian matrix Ω ∈
Rk×k, the unitarily generated frame Φm,k = {φ(m)

j }j is

φ
(m)
j = Uj/mφ0, Ut := e2πıΩt. (7)

The eigenvalues and eigenvectors of Ω are repre-
sented as {λj}j and {vj}j .
Theorem I.6 (Alternative Decimation for Finite Frames
up to the Second Order, [14]). Given Ω, φ0, {λj}j ,
{vj}j , and Φ = Φm,k as the generator, base vector,
eigenvalues, eigenvectors, and the corresponding UGF,
respectively, and r = 1, 2. Suppose
• {λj}kj=1 ⊂ [−η/2, η/2] ∩ Z\{0},
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• Cφ0
= mins |<φ0, vs>|2 > 0, and

• ρ | m,
then the dual frame F = (DρS

r
ρΦm,k)†DρS

r
ρ combined

with the r-th order Σ∆ quantization has reconstruction
error Em,ρ,r with polynomial decay rate of degree r with
respect to the oversampling ratio ρ:

Em,ρ,r ≤ C‖u‖∞
1

ρr
.

Moreover, the total number of bits used to record
the quantized samples is R = O(log(m)) bits. Suppose
η = m/ρ is fixed as m→∞, then as a function of total
number of bits used, E = Em,ρ satisfies

E (R) ≤ C‖u‖∞2−
1
2ηR.

II. PERSPECTIVE AND PRIOR WORKS

1) Quantization for Bandlimited Functions: It was
proven in [7] that the r-th order Σ∆ quantization has
error decay of polynomial order r. Leveraging the dif-
ferent constants for this family of quantization schemes,
sub-exponential decay can also be achieved. A different
family of quantization schemes was shown [12] to have
exponential error decay with small exponent (c ≈ 0.07.)
In [10], the exponent was improved to c ≈ 0.102.

2) Finite Frames: It was proven [1] that for any
family of finite frames with bounded frame variation,
the reconstruction error decays linearly with respect
to the oversampling ratio. With different choices of
dual frames, [2] proved that the so-called Sobolev dual
achieves minimum induced matrix 2-norm for recon-
structions, and [5] proved that using a β-dual for ran-
dom frames results in exponential decay of near-optimal
exponent and with high probability.

3) Decimation: In [3], using the assumption that the
noise in Σ∆ quantization is random along with numeri-
cal experiments, it was asserted that decimation greatly
reduces the number of bits needed while maintaining
the reconstruction accuracy. In [9], a rigorous proof was
given to show that such an assertion is indeed valid, and
the reduction of bits used turns the linear decay into
exponential decay with respect to the bit-rate.

4) Beta Dual of Distributed Noise Shaping: Chou
and Günturk [5], [4] proposed a distributed noise shaping
quantization scheme with beta dual. The definition of a
beta dual is as follows:

Definition II.1 (Beta Dual). Let E ∈ Cm×k be an analy-
sis operator and suppose k | m. Given β > 1, the β-dual
FV = (V E)†V has V = Vβ,m, a k-by-m block matrix
such that each block is v = [β−1, β−2, . . . , β−m/k] ∈
R1×m/k.

In this case, the noise shaping scheme is y−q = Hu,
where H is an m-by-m block matrix with each block h

as an m/k-by-m/k matrix with unit diagonal entries and
−β as sub-diagonal entries. In this setting, it is proven
that the reconstruction error decays exponentially.

III. MAIN RESULTS

We have seen in Theorem I.6 that alternative deci-
mation is only useful up to the second order. Thus, we
extend our results to arbitrary orders, and the solution
we present here is called the adapted decimation.

Definition III.1 (Adapted Decimation). Given r,m, ρ ∈
N, the (r,m, ρ)-adapted decimation operator is defined
to be

Ar =
1

ρr
Dρ∆̄

r
ρ∆
−r,

where ∆̄ρ ∈ Rm×m satisfies (∆̄ρ)l,s = δ(l − s)− δ(l +
ρ − s) + δ(s − m)δ(l − ρ), and Dρ ∈ Nm/ρ×m has
(Dρ)l,s = δ(s− lρ).

Theorem III.2. Given Ω, φ0, {λj}j , {vj}j , and Φ =
Φm,k as the generator, base vector, eigenvalues, eigen-
vectors, and the corresponding UGF, respectively, and
r ∈ N fixed. Suppose
• η ≥ 3rk,
• {λj}kj=1 ⊂ [−η/2, η/2] ∩ Z\{0},
• Cφ0

= mins |<φ0, vs>|2 > 0, and
• ρ | m,

where η = m/ρ. Then the following statements are true.
(a) Recursivity: For all s ∈ {1, . . . , η}, there exists
{csj}sρj=1 such that (Arq)s =

∑sρ
j=1 c

s
jqj .

(b) Signal reconstruction: ArΦm,k is a frame.
(c) Error estimate: For the dual frame F =

(ArΦm,k)†Ar, the reconstruction error Em,ρ sat-
isfies

Em,ρ ≤
(

4k

η
Cφ0

(8η

π

)r)‖u‖∞ 1

ρr
. (8)

(d) Efficient data storage: Suppose the length of the
quantization alphabet is 2L, then the total number
of bits used to record the quantized samples Arq is
R = 2ηr log(2m) + 2η log(2L) bits. Furthermore,
suppose η = m/ρ is fixed as m → ∞, then as a
function of total number of bits used, E = Em,ρ
satisfies

E (R) ≤ Ck,η,φ0,L‖u‖∞2−
1
2ηR, (9)

where Ck,η,φ0,L = 8kL
η Cφ0

(
16η2

π

)r
, independent of

ρ.

IV. PROOF OF THEOREM III.2

Due to the constraint of space, we only give a sketch
of proof, omitting the details. Interested readers can refer
to the full manuscript [15].
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Lemma IV.1. Given r,m, ρ ∈ N with η = m/ρ ∈ N,

Dρ∆̄
r
ρ = (∆(η))rDρ,

where ∆(η) is the η-dimensional backward difference
matrix.

Proposition IV.2. Suppose η ≥ 3rk, then ArΦm,k is a
frame with lower frame bound larger than kCφ0

( 2
π )r.

Lemma IV.3.

‖(ArΦm,k)∗∆r‖∞,2 ≤ 22r+2ηr−1,

where the operator norm ‖S‖∞,2 := sup‖x‖∞=1 ‖Sx‖2.

Proof. of Theorem III.2:
By Lemma IV.1,

ρrArq = Dρ∆̄
r
ρ∆
−rq = ∆rDρ(∆

−rq).

Since ∆ and ∆−1 are lower-triangular, we see that, for
any 1 ≤ s ≤ η, there exist {asj}sj=1 and {blj}j,l such that

(Arq)s =

s∑
j=1

asj(Dρ∆
−rq)j

=

s∑
j=1

asj(∆
−rq)jρ

=

s∑
j=1

asj

jρ∑
l=1

bjl ql =

sρ∑
ξ=1

cξqξ,

proving the first claim. The second assertion follows
from Proposition IV.2.

Given Φ = Φm,k, A = Ar = 1
ρrDρ∆̄

r
ρ∆
−r, and

S = (AΦ)∗AΦ, the reconstruction error can be estimated
as follows:

E = ‖S−1(AΦ)∗Aq − x‖2
= ‖S−1(AΦ)∗A∆ru‖2
=

1

ρr
‖S−1(AΦ)∗∆rDρu‖2

≤ 1

ρr
‖S−1‖2‖(AΦ)∗∆r‖∞,2‖Dρu‖∞

≤
(

4k

η
Cφ0

(8η

π

)r)‖u‖∞ 1

ρr
,

where the second inequality comes from Proposition IV.2
and Lemma IV.3.
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