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Abstract—The classical sampling theory relies on the exact
values of functions taken at some set of points, while in many
applications only the local averages in the neighborhood of these
points are known. For this reason, we consider the Kantorovich-
type sampling operators in which the samples are replaced with
the average values of a function on a small interval. In this paper,
we use the results we have for the classical generalized sampling
operators to prove the analogous results for the Kantorovich-type
sampling operators. In particular, we obtain the exact values of
operator norms in L1 and L∞, the estimate of operator norm
in case of bandlimited kernel as well as the estimate of order of
approximation in terms of the modulus of smoothness.

I. INTRODUCTION

For the uniformly continuous and bounded functions f ∈
C(R), the generalized sampling operators are given by (t ∈ R;
W > 0)

(SW f)(t) :=

∞∑
k=−∞

f

(
k

W

)
s(Wt− k). (1)

The condition for the operator SW : C(R) → C(R) to be
well-defined is the kernel s ∈ L1(R) satisfying
∞∑

k=−∞

s(u− k) = 1,

∞∑
k=−∞

|s(u− k)| <∞ (u ∈ R), (2)

the absolute convergence being uniform on compact intervals
of R.

If the kernel function is

s(t) = sinc(t) :=
sinπt

πt
,

we get the classical Whittaker–Kotelnikov–Shannon operator

(Ssinc
W f)(t) :=

∞∑
k=−∞

f

(
k

W

)
sinc(Wt− k). (3)

A systematic study of sampling operators (1) for arbitrary
kernel functions s satisfying (2) was initiated at RWTH
Aachen by P. L. Butzer et al. in 1977 (see [1], [2], [3] and
references cited there).

The above mentioned sampling operators depend on exact
values f(k/W ), while in many applications for physical
reasons (e.g. the inertia of the measurement apparatus) the

results of measurements are some local averages, not the exact
point estimates. This situation often occurs in signal processing
tasks and is referred to as ”time-jitter”.

In this case, f(k/W ) in (1) can be replaced with an
average of f on a small interval around k/W , which gives
us the corresponding Kantorovich-type sampling operators for
locally integrable f ∈ C(R) and f ∈ Lp(R), defined by
(t ∈ R; n ∈ N; W > 0)

(SK
W,nf)(t)

:=

∞∑
k=−∞

nW (2nk+1)/2nW∫
(2nk−1)/2nW

f(u) du

 s(Wt− k). (4)

For any f ∈ Lp(R) (1 6 p <∞) and any locally integrable
f ∈ C(R), we have, respectively, the uniform convergence
(see [4])∥∥f − SK

W f
∥∥
p
→ 0 and

∥∥f − SK
W f
∥∥
C
→ 0 (W →∞),

‖ · ‖C denoting the supremum norm.
Such type of operators was first introduced by L. Kan-

torovich for Bernstein polynomials in 1930 and later consid-
ered in the context of generalized sampling operators in [4]
by P. L. Butzer et al. (namely, in the form (4) with n = 1),
followed by [5], [6], [7], [8], [9], [10], [11], [12] and references
cited there. Conceptually similar average sampling in shift-
invariant subspaces was considered in e.g. [13], [14], [15].
Quasi-projection operators of similar structure were studied in
e.g. [16].

In operators (4), the local averages are calculated via the
convolution with the rectangular function. In [17], we intro-
duced the generalized Kantorovich-type sampling operators,
where the local averages are calculated via the convolution
with an arbitrary function χ ∈ L1(R) (

∫∞
−∞ χ(u) du = 1).

However, in this paper we would like to restrict ourselves
to the special case of (4) and examine some of its specific
properties more closely, using the results from [17].

The rest of the paper is organized as follows. In Section II,
we briefly review such notions as Bernstein classes, modulus
of smoothness and Jackson-type inequalities. We rely upon
these notions when we formulate and prove our main results.



In Section III.A, we give the estimate of operator norm
in case if kernel s is bandlimited. We also give the exact
values of operator norms in L1 and L∞. In Section III.B,
we estimate the order of approximation for operators SK

W,n

using the existing estimate for corresponding operators SW .
The summary is given in Section IV.

II. PRELIMINARIES

A. Bernstein classes

The Bernstein class Bpσ is the class of those bounded
functions f ∈ Lp(R) (1 6 p 6 ∞) which can be extended
to an entire function f(z) (z ∈ C) of exponential type σ > 0
([2] or [18], 4.3.1), i.e.,

|f(z)| 6 eσ|y|‖f‖C (z = x+ iy ∈ C).

The class Bpσ is a Banach space if one takes the norm of
Lp(R).

We have B1
σ ⊂ Bpσ ⊂ Brσ ⊂ B∞σ , 1 6 p 6 r 6∞ ([19], L.

6.6; [2], p. 33).
The Bernstein class plays a crucial role in the famous

Whittaker–Kotelnikov–Shannon theorem which states ([2], Th.
6.3a): if f ∈ BpπW , 1 6 p < ∞, or f ∈ B∞σ for some
0 6 σ < πW , then

(Ssinc
W f)(t) = f(t).

B. Modulus of smoothness

The k-th modulus of smoothness ([20], p. 76) of a function
f ∈ C(R) or f ∈ Lp(R) (1 6 p < ∞) is defined for any
δ > 0 by

ωk(f, δ)C := sup
|h|6δ

‖
◦
∆k
hf(·)‖C (5)

or

ωk(f, δ)p := sup
|h|6δ

‖
◦
∆k
hf(·)‖p, (6)

respectively, where
◦
∆k
hf(·) denotes the central difference

([20], p. 197),

◦
∆k
hf(x) :=

k∑
`=0

(−1)`
(
k

`

)
f(x+ (k/2− `)h). (7)

The modulus of smoothness has the following properties
([20], p. 76; [18], 3.3):

ωk(f, δ) 6 2k−rωr(f, δ) for any r ∈ N, r 6 k,
ωk(f, jδ) 6 jkωk(f, δ) for any j ∈ N,
ωk(f, λδ) 6 b1 + λckωk(f, δ) for any λ > 0

(8)
(bxc is the largest integer less than or equal to x ∈ R).

C. Jackson-type inequality

Jackson-type inequality, given below, plays an important
role in approximation of functions. In particular, it is used
to get the estimates of order of approximation for generalized
sampling operators SW (see e.g. [21]). In our work we build
upon these results.

Proposition A (cf. [22], Prop. 2). Given f ∈ C(R)(≡
L∞(R)) or f ∈ Lp(R) (1 6 p < ∞), there exists g∗σ ∈ Bpσ
(1 6 p 6 ∞) and a constant Ck > 0 (depending only on
k ∈ N) such that

‖f − g∗σ‖p 6 Ckωk (f, 1/σ)p .

The proof is based on the well-known Jackson-type theorem
when approximations are realized by functions from Bpσ (see,
for instance, [18], 2.6.2, 2.6.3, 5.1.3).

III. MAIN RESULTS

A. Operator norms

Recall that the sampling operator SW : C(R) → C(R)
has the norm

‖SW ‖ := sup
u∈R

∞∑
k=−∞

|s(u− k)| <∞. (9)

.
In [17], we gave an Lp norm estimate for the generalized

Kantorovich-type sampling operators. In case of particular
form (4) which we study in this paper, we have the following
result.

Proposition 1 (cf [17]). For every f ∈ Lp(R) (1 6 p 6 ∞)
there holds (n ∈ N; 1

p + 1
q = 1)

‖SK
W,nf‖p 6 n1/p‖SW ‖1/q‖s‖1/p1 ‖f‖p.

Being a special case, the proof follows from the result in
[17].

Now we get a separate estimate of ‖SK
W,nf‖p for the

operators with bandlimited kernels, namely, when s ∈ B1
π .

Corollary 1. For every f ∈ Lp(R) (1 6 p 6∞) and s ∈ B1
π

there holds (n ∈ N)

‖SK
W,nf‖p 6 n1/p‖SW ‖‖f‖p.

Proof. By Nikolskii inequality ([23], p. 124 or [19], Th. 6.8)
we have for every s ∈ Bpσ (1 6 p 6∞)

‖s‖p 6 sup
u∈R

{ ∞∑
k=−∞

|s(u− k)|p
}1/p

6 (1 + σ)‖s‖p. (10)

Using (10) and (9) in Proposition 1 completes the proof.

Now we look at the widely used cases of L1 and L∞. In
those cases we can compute the exact values of the operator
norm.



Theorem 1. The sampling operator SK
W,n : L1(R)→ L1(R)

has the norm

‖SK
W,n‖1→1 := sup

‖f‖161

‖SK
W,nf‖1 = n‖s‖1.

Proof. By Proposition 1 we have the upper bound

‖SK
W,n‖1→1 6 n‖s‖1.

Now we construct the lower bound. Consider for fixed W and
n the function

gW,n(t) :=


0, t < −1

2nW ,

nW, −1
2nW 6 t 6 1

2nW ,

0, t > 1
2nW .

Obviously, gW,n ∈ L1(R) and ‖gW,n‖1 = 1. Then we have
for n > 1

‖SK
W,ngW,n‖1

=

∫
R

∣∣∣∣∣∣∣
∞∑

k=−∞

nW

(2nk+1)/2nW∫
(2nk−1)/2nW

gW,n(u) du s(Wt− k)

∣∣∣∣∣∣∣ dt
=

∫
R
nW |s(Wt− k)| dt = n‖s‖1.

Taking into account that

‖SK
W,n‖1→1 := sup

‖f‖161

‖SK
W,nf‖1 > ‖SK

W,ngW,n‖1 = n‖s‖1

we see that the upper and lower bound coincide which
completes the proof.

The following theorem states that in case of f ∈ C(R) the
operator norms of SW and the corresponding SK

W,n are the
same.

Theorem 2. If the sampling operator SW : C(R) →
C(R) has the finite norm ‖SW ‖, then the corresponding
Kantorovich-type operator SK

W,n : C(R) → C(R) has the
norm

‖SK
W,n‖ := sup

‖f‖∞61

‖SK
W,nf‖∞ = ‖SW ‖.

Proof. By Proposition 1 we have the upper bound

‖SK
W,n‖ 6 sup

u∈R

∞∑
k=−∞

|s(u− k)|.

The series on the right defines a continous function with period
one. Therefore,

‖SK
W,n‖ 6 sup

− 1
26u6

1
2

∞∑
k=−∞

|s(u− k)|. (11)

The series on the right is uniformly convergent and for s ∈
C(R) there exists u∗ ∈ [− 1

2 ,
1
2 ] such that

sup
− 1

26u6
1
2

∞∑
k=−∞

|s(u− k)| =
∞∑

k=−∞

|s(u∗ − k)|. (12)

Now we construct the lower bound. Consider for fixed W and
t the function

gW,ε,t(u)

:=


2Wu−2k+1

2ε sgn s(Wt− k), 2k−1
2W 6 u < 2k−1+2ε

2W ,

sgn s(Wt− k), 2k−1+2ε
2W 6 u 6 2k+1−2ε

2W ,
2k+1−2Wu

2ε sgn s(Wt− k), 2k+1−2ε
2W < u 6 2k+1

2W .

Obviously, gW,ε,t ∈ C(R) and ‖gW,ε,t‖∞ = 1. Then we have
for n > 1 and ε < 1/(4nW )

(SK
W,ngW,ε,t)(t)

=

∞∑
k=−∞

nW (2nk+1)/2nW∫
(2nk−1)/2nW

gW,ε,t(u) du

 s(Wt− k)

=

∞∑
k=−∞

|s(Wt− k)|

and for n = 1 and ε < 1/(4nW )

(SK
W,ngW,ε,t)(t)

=

∞∑
k=−∞

nW (2nk+1)/2nW∫
(2nk−1)/2nW

gW,ε,t(u) du

 s(Wt− k)

= (1− ε)
∞∑

k=−∞

|s(Wt− k)|.

If we take t∗ such that Wt∗ = u∗ from (12), then for n > 1
and ε < 1/(4nW )

‖SK
W,n‖ > |(SK

W,ngW,ε,t∗)(t
∗)| =

∞∑
k=−∞

|s(u∗ − k)| (13)

and for n = 1 and 0 < ε < 1/(4nW )

‖SK
W,n‖ > (1− ε)

∞∑
k=−∞

|s(u∗ − k)| (14)

which together with (11) and (12) completes the proof.

B. Order of approximation

In this section, we estimate the order of approximation for
the Kantorovich-type sampling operators SK

W,n : Lp(R) →
Lp(R) (1 6 p 6 ∞) using the existing estimate for the
corresponding operators SW .

As a first step, we represent the Kantorovich-type sampling
operators in terms of Steklov functions (see [18])

fh(t) := h

1/(2h)∫
−1/(2h)

f(t+ u) du (15)

in form

(SK
W,nf)(t) =

∞∑
k=−∞

fnW

(
k

W

)
s(Wt− k). (16)



Now we are ready to formulate our result.

Theorem 3. If we can estimate the order of approximation
by the operator SW via the modulus of smoothness of order
r > 2, then we have for the corresponding Kantorovich-type
operator SK

W,n : Lp(R)→ Lp(R) (1 6 p 6∞) the estimate

‖f − SK
W,nf‖p 6Mω2(f, 1/W )p.

Proof. We use the representation (16) and have the following
estimate

‖SK
W,nf − f‖p = ‖SW fnW − f‖p

6 ‖SW fnW − fnW ‖p + ‖fnW − f‖p. (17)

We have for f ∈ Lp(R) also fnW ∈ Lp(R). If we have the
estimate

‖SW f − f‖p 6M1ωr (f, 1/W )p (r > 2),

then
‖SW fnW − fnW ‖p 6M1ωr(fnW , 1/W )p.

Using the definition (6) of the modulus of smoothness, we get

ωr(fh, δ)p = sup
|v|6δ

‖
◦
∆k
vh

1/(2h)∫
−1/(2h)

f(·+ u) du‖p

= sup
|v|6δ

‖h
1/(2h)∫
−1/(2h)

◦
∆k
vf(·+ u) du‖p

6 h

1/(2h)∫
−1/(2h)

sup
|v|6δ

‖
◦
∆k
vf(·+ u)‖p du

= sup
|v|6δ

‖
◦
∆k
vf(·+ u)‖p = ωr(f, δ)p.

Then

‖SW fnW − fnW ‖p 6M1ωr(fnW , 1/W )p (18)
6M1ωr(f, 1/W )p 6M1ω2(f, 1/W )p.

By ([18], 3.12.4) we have, using the properties (8) of the
modulus of smoothness, the estimate

‖fnW − f‖p 6 ω2(f, 1/nW )p 6

(
1 +

1

n

)2

ω2(f, 1/W )p.

(19)
Putting the estimates (18) and (19) into (17) completes the
proof.

IV. SUMMARY

In this paper, we focused on the average sampling by
means of Kantorovich-type sampling operators. The main
contribution of this paper is the study of operator norms: we
gave a norm estimate for operators with bandlimited kernels
and exact operator norm values in L1 and L∞. We also gave
an estimate of order of approximation in terms of the modulus
of smoothness.
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