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Abstract—Electroencephalogram (EEG) is a noninvasive, low-
cost brain recording tool with high temporal but poor spatial
resolution. In contrast, functional magnetic resonance imaging
(fMRI) is a rather expensive brain recording tool with high
spatial and poor temporal resolution. In this study, we aim at
recovering the brain activity (source localization and activity-
intensity) with high spatial resolution using only EEG record-
ings. Each EEG electrode records a linear combination of the
activities of various parts of the brain. As a result, a multi-
electrode EEG recording represents the brain activities via a
linear mixing matrix. Due to distance attenuation, this matrix
is almost sparse. Using simultaneous recordings of fMRI and
EEG, we estimate the mixing matrix (calibration). Since Blood
Oxygen Level Dependent (BOLD) signal of fMRI is a measure
of energy used by active brain region, it has a quadratic relation
with the electric potential waveform emitted from each fMRI
volume pixel (voxel). Assuming uncorrelated time series from
different regions, we reformulate the (underdetermined) forward
problem as a linear problem and solve it using the Orthogonal
Matching Pursuit (OMP) method. Besides the mixing matrix, the
brain activities are often sparse spatially. Thus, we employ the
estimated mixing matrix to extract the activity intensity of various
brain regions from EEG recordings using iterative shrinkage
thresholding algorithm (ISTA). We verify the proposed method
on synthetic data. In particular, we divide the gray matter of the
brain into 300 regions and assume a 30%-sparse measurement
matrix, as well as 5% of regions to be active simultaneously.
Simulations results show 88% accuracy in localizing the sources
and and 66% accuracy in activity intensity estimation.

Index Terms—Electroencephalogram, Blood Oxygen Level De-
pendency, Voxels, Gray matter, Orthogonal Matching Pursuit,
Iterative Shrinkage Thresholding Algorithm

I. INTRODUCTION

On one hand electroncephalogram (EEG) has become a
widespread brain recording tool due to its noninvasive na-
ture, relatively low-cost implementation and good temporal
resolution. But it suffers from poor spatial resolution. On the
other hand, functional magnetic resonance imaging (fMRI)
provides a high spatial resolution with the expense of poor
temporal resolution. In addition, fMRI require high initial and
per-test costs. The type of experiments are also restricted by
the movement limitations inside the MRI scanner. Therefore,
it is highly desirable to use EEG instead of fMRI, if the
spatial resolution of EEG is improved. Several research works
are devoted to EEG source localization [1], [2]. In source

localization problems, the location of the sources are inves-
tigated regardless of their activity intensity. In this paper, the
source localization is achieved in two steps. In the first step,
we identify the forward model; i.e., we estimate the effective
impact of each brain voxel on each EEG electrode. In the
second step, by having the forward model, we cast the source
localization task as an inverse problem with sparsity constraint.

The electromagnetic wave emitted from each region is fairly
modeled by an electrical dipole [3]. The reason is that the
neural activities (spikes) coincide with strong electrical charge
separation within a volume. the additivity of electric potential,
at each EEG electrode we measure a weighted sum of net
dipole moments of regions. Hence, EEG recordings are linked
with regional activities via a mixing (measurement) matrix.
Practically, the number of electrodes is far less than the
number of brain voxels, which makes the measurement matrix
extremely fat. The weights in partial sums depend on the
distance between the electrodes and the brain voxels, as well as
the permitivity of the inter-cell materials. Since the potential of
a dipole decays quadratically with the distance, many entries
of the measurement matrix are close to zero (negligible), and
thus, the matrix can be assumed sparse. Therefore, it is logical
to employ the technique in compressed sensing to estimate the
mixing matrix.

Our main goal is to estimate the activity of each brain region
or at least the location of active regions. Since only a fraction
of the brain voxels is active at each time instance [1], the
underdetermined system of equation form an inverse problem
with sparsity constraint. On one hand, the activity magnitude
of each region is defined as the number of spikes elicited in
that region, in a short time period. The blood oxygen level de-
pendent (BOLD) response of fMRI is more likely to represent
this definition of activity (after being deconvolved from the
hemodynamic response), since each spike consumes a certain
amount of energy and the BOLD response is proportional to
the total energy used by a region [4]. On the other hand, the net
dipole moment associated with each region is the superposition
of numerous dipoles (spikes from various neurons) which are
not necessarily aligned, but more often scattered randomly [5].
In this paper, we use simultaneous EEG-fMRI recordings to
estimate the measurement matrix. This is in contrast to the
previous works on source localization which oftentimes use



a loose approximation of the measurement matrix based on
a permitivity map of the brain extracted from high-resolution
MRI scans. We also show that the energy of the potential
waveform of each region at given time intervals is proportional
to the number of spikes elicited in that period. As a conse-
quence, a quadratic relationship holds between the fMRI and
EEG signals. Assuming the waveforms of coactivated regions
to be uncorrelated, we reformulate the forward and inverse
problems and solve them using OMP and ISTA respectively.

This paper is organized as follows. In Section II, we
describe the mathematical model for production of synthetic
data and show the relation between the activity of a region
and the energy of its elicited waveform. We investigate the
mathematical modeling of the forward and inverse problems of
EEG source localization in Section III. The simulation results
are reported in section IV. Finally, Section V concludes this
paper.

II. SYNTHETIC DATA FOR SIMULTANEOUS EEG-FMRI

The electric potential of a dipole −→p located at the origin,
observed at point −→r is given by:

Vp(
−→r ) = k

−→p .−→r
‖r‖3

=
p. cos θ

‖r‖2
(1)

where k = 1
4πε is the Coulomb’s constant and θ is the angle

between −→p and −→r . We assign an electric dipole to each
spike with a unit dipole moment. We also partition the gray
matter into n regions and consider time intervals of T seconds.
Assume the activity (the number of spikes in a time interval)
of region i at a given time interval is bi and these spikes are
scattered randomly over the time interval. Then, the potential
of region i at point −→r and time t is given by:

Vi (
−→r , t) =

∑
j=1:bi

k
cos θj
‖rj‖2

δ(t−tj) =
k

‖r‖2
∑
j=1:bi

δ(t−tj). cos θj

(2)
where δ(t− tj) indicates the occurrence of a spike at time tj .
Also note that at a point −→r sufficiently far from the region i
(e.g., on the skull), all the dipoles within region i are almost
at the same distance from ‖r‖. Based on (2), we may also
define the net dipole moment of region i as:

pi(t) =
∑
j=1:bi

δ(t− tj). cos θj (3)

Assuming a sufficiently large number of dipoles in each
region, and uniform scattering of the directions in the space,
the energy of this waveform within a time interval is given
by:

Ei(
−→r ) =

ˆ

T

V 2
i (−→r , t) dt = k2

‖r‖4
∑
j=1:bi

cos2 θj ≈

k2bi
‖r‖4

Eθ
[
cos2 θ

]
=

k2bi
2‖r‖4

(4)

We produce synthetic pairs of EEG-fMRI data as follows.
For each region, a random integer between 40 and 2000 with

steps of 40, is chosen as its activity. The spikes of each region
are scattered randomly in a time interval of length T = 2.5s.
The spikes are then assigned a random weight cos θ, with
θ uniformly distributed in [0, 2π]. The resultant signal is the
waveform of the net dipole moment associated with the region.

III. THE FORWARD AND INVERSE PROBLEMS VIA
COMPRESSED SENSING

A. The Forward Problem

As discussed earlier, the potential of electrode i at time t is
a weighted sum of net dipole moments of regions:

ei(t) =
∑
j=1:n

Wijpj(t) (5)

where, Wij is the coefficient that links the net dipole in region
j, to the recordings of electrode i. In a more accurate disciple,
we may substitute the weights with some integrals, due to the
changes in medium and consequently in ε and k.

The energy of ei(t) over a time interval is given by:

εi =

ˆ

T

e2i (t) =
∑
j=1:n

W 2
ij

ˆ

T

p2j (t)+
∑

j,k;j 6=k

WijWik

ˆ

T

pj(t).pk(t)

(6)
In the R.H.S of (6), the first integral equals bj

2 and the
second one is assumed to be zero since the waveform of
coactive regions are assumed uncorrelated. Therefore:

εi ≈
∑
j=1:n

W 2
ijbj (7)

The matrix form of (7) is given by:

e = Mb (8)

where e = [ε1, . . . , εE ], E represents the number of elec-
trodes, and b = [b1, . . . , bn]. The measurement matrix M is
such that Mij =W 2

ij .
For a set of N simulation measurements, we will have the

pairs
(
e1,b1

)
, . . .

(
eN,bN

)
, by which, we tend to estimate the

sparse unknown matrix M. The resulting compressed sensing
problem can be written as:
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...

...
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. . .

...
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0
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...
...
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0 · · · 0 1


E×E

(9)

where bij = bi(j) and M i is the ith column of M. Now, the
unknown matrix is reshaped as a vector. We further use OMP
method to estimate the vectorized M.



B. The inverse Problem

The inverse problem is simply given by (8), assuming the
availability of the measurement matrix M. We implemented
a modified version of ISTA to retrieve the region activities b.
The modification is such that in each ISTA iteration, only the
non-negative elements are preserved and the others are set to
zero.

Also note that, the success of retrieving the spatial activities
(at n voxels) depends on the RIP of the estimated matrix
M. Consequently, we can estimate the maximum feasible n
by iteratively increasing n, estimating M, and conducting its
coherence.

IV. SIMULATIONS

We produced synthetic data for the simultaneous EEG-fMRI
based on the description in section II, for a n = 300 number
of regions and a E = 64 number of EEG electrodes. 5%
of regions were assumed to be active simultaneously. The
elements of Wwere chosen according to a Laplace distribution
and 70% of them were randomly set to zero. We used an
N = 200 number of EEG-fMRI pairs to estimate M. Using
the estimated measurement matrix M, we tested estimating
regions’ activities in 50 trials. Table 1 shows the simulation
results. Also, fig.1 compares the original activities and the
retrieved ones for a single trial. We measured the accuracy in
activity estimation, by the percentage of regions whose activity
was estimated we an error smaller than 30%.

TABLE I
ACCURACY FOR LOCALIZATION AND ACTIVITY ESTIMATION

Table Accuracy
Localization 0.88

Activity Estimation 0.66

Fig. 1. Original and reconstructed neural activities

V. CONCLUSION

In this paper, we investigated solving the forward and in-
verse problems of EEG source localization, using compressed

sensing approach. Using simultaneous EEG-fMRI recordings
to solve the forward problem based on the compressed sensing,
is a new idea and actually this paper has investigated the
feasibility of the idea. While custom EEG source localization
methods only estimate the locations of active sources, the pro-
posed solution is capable of estimating the intensity of activity
as well. Simulation results are promising and encourage testing
the algorithm on real clinical data.
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