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Reconstructing high-dimensional Hilbert-valued
functions via compressed sensing

Nick Dexter, Hoang Tran, and Clayton Webster

Abstract—We present and analyze a novel sparse polynomial
technique for approximating high-dimensional Hilbert-valued
functions, with application to parameterized partial differential
equations (PDEs) with deterministic and stochastic inputs. Our
theoretical framework treats the function approximation problem
as a joint sparse recovery problem, where the set of jointly sparse
vectors is possibly infinite. To achieve the simultaneous recon-
struction of Hilbert-valued functions in both parametric domain
and Hilbert space, we propose a novel mixed-norm based `1
regularization method that exploits both energy and sparsity. Our
approach requires extensions of concepts such as the restricted
isometry and null space properties, allowing us to prove recovery
guarantees for sparse Hilbert-valued function reconstruction.
We complement the enclosed theory with an algorithm for
Hilbert-valued recovery, based on standard forward-backward
algorithm, meanwhile establishing its strong convergence in the
considered infinite-dimensional setting. Finally, we demonstrate
the minimal sample complexity requirements of our approach,
relative to other popular methods, with numerical experiments
approximating the solutions of high-dimensional parameterized
elliptic PDEs.

Index Terms—High-dimensional approximation, compressed
sensing, Hilbert-valued functions, parametric PDEs, bounded
orthonormal systems, forward-backward iterations.

I. INTRODUCTION

Underlying many successful applications of compressed
sensing to problems in applied mathematics and the physical
sciences is the fact that, for many practical problems, the target
to be reconstructed possesses sufficient sparsity in order to
enable unique solutions from systems that would otherwise
be ill-posed. In the basic compressed sensing problem, the
signal is an unknown vector c 2 RN , and the sensing process
yields a measurement vector u 2 Rm that is formed by the
product of c with a sensing matrix, i.e., u = Ac, where
A 2 Rm⇥N . The key observation is that when the signal
c is sufficiently sparse, it can be uniquely determined from an
underdetermined set of measurements (m ⌧ N ), provided A
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satisfies certain additional properties. To overcome the NP-
hardness of directly finding the sparsest c consistent with
a given set of measurements, various greedy and convex
relaxation strategies have been proposed and demonstrated,
both empirically and theoretically, to have good reconstruction
performance in a range of settings.

In the parameterized PDE literature, one typically seeks to
approximate the parameter-to-solution map y 7! u(y), taking
values in a Hilbert space V , by a truncation of its orthonormal
expansion, i.e.,

u =
X

⌫2F
c⌫ ⌫ ⇡

X

⌫2J
c⌫ ⌫ =: uJ . (1)

Here, y 2 U a high-dimensional tensor product domain, J is
a finite multi-index set of cardinality N = #(J ) with J ⇢

F := Nd
0, ( ⌫)⌫2J is an L

2(U , d%)-orthonormal basis, and
c = (c⌫)⌫2J 2 V

N are the Hilbert-valued coefficients to be
computed. Generally, one selects J to be a set large enough
to ensure that

ku� uJ k
2
L2 = kuJ ck

2
L2 =

X

⌫2F\J

kc⌫k
2
V (2)

is minimal. However, this can lead to a less efficient approx-
imation if J is not chosen carefully.

Over the course of the last decade, a series of works in
the parameterized PDEs community (see [4] and the reference
therein) have demonstrated that, under reasonable assumptions
on the input data to the PDEs, the solutions are compressible,
and hence well-represented by sparse expansions in given
orthonormal systems. In other words, the solution vector c
from (1) is sparse, and accurate reconstructions of the most
important components of c are enough for satisfactory ap-
proximations of the PDE solutions. The ability of compressed
sensing (CS) to exploit sparsity and allow far fewer samples
than traditional approaches (e.g., Monte-Carlo, projection,
interpolation) makes it a promising tool for such reconstruction
problems. Therefore it is no surprise that CS-based polynomial
approximation has attracted growing interest in the area of
high-dimensional parameterized PDEs in recent years, [8],
[12], [13], [15]–[17], [21].

However, there has been a critical mismatch between stan-
dard CS techniques and the problem of reconstructing Hilbert-
valued solutions to parameterized PDEs: these methods do
not enable direct recovery of the vector (c⌫)⌫2J 2 V

N , i.e.,
a vector with Hilbert-valued components. Instead, CS-based
polynomial approximation methods only allow the recovery
of real or complex sparse vectors. Hence, in the context of
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parameterized PDEs, standard CS-based polynomial approx-
imation methods do not yield approximations of the entire
solution map y 7! u(·,y) 2 V , but only functionals of the
solution, i.e., maps of the form y 7! G(u(y)) 2 R, where
G : V ! R is a functional of u. In particular, many of the
existing works (cited above) perform point-wise reconstruction
of the solution, i.e., reconstruction of the map y 7! Gx?(u(y))
with Gx?(u(y)) = u(x?

,y) for a fixed x
?
2 D, with D the

physical domain of the PDE.
In this paper, we present an overview of latest progress

in addressing this mismatch by developing a novel sparse
recovery technique which enables direct reconstruction of
Hilbert-valued vectors, [5], [6]. The theoretical framework,
based on the problem of joint-sparse recovery, treats the
recovery problem as a matrix recovery problem in which each
row of the solution matrix may have infinitely many terms
corresponding to the coefficients of a Hilbert-valued function
in a given basis. Our regularization is performed with respect
to a mixed norm k ·kV,1, which is defined to be the `1 norm of
the vector (kc⌫kV)⌫2J . Often, the decay of the polynomial
coefficients and tail bounds are estimated in global energy
norms rather than pointwise over the physical domain D [4].
As we will show, our choice of regularization enables us
to prove convergence rates for global approximations in the
same energy norms, with explicit computable coefficients. We
present the theoretical support of this strategy via several ex-
tensions of compressed sensing concepts such as the restricted
isometry property (RIP) and null space property (NSP) to the
Hilbert-valued setting.

Our regularization problem is solved with a forward-
backward splitting approach. We present a new strong conver-
gence result for forward-backward splitting in a joint sparse
recovery scenario where we assume neither the strict convexity
of the fidelity functions nor the finite cardinality of the
set of signals to construct. We note that most of similar
strong convergence results along the line need at least one of
these conditions. In relation to parameterized PDEs problem,
this result means that forward-backward splitting strongly
converges even before discretization in (infinite-dimensional)
Hilbert space is introduced.

The rest of the paper proceeds as follows. In Section II, we
introduce our approach of sparse regularization and provide
a brief comparison to the problem of joint-sparse recovery.
In Section III, we present theoretical guarantees for the direct
reconstruction of Hilbert-valued functions through mixed norm
regularization, as well as convergence estimates in case of pa-
rameterized PDEs. Section IV introduces a version of forward-
backward algorithm adapted for Hilbert-valued recovery and
provides its strong convergence result. Section V presents
numerical results on applying the sparse regularization method
to the solution of a parameterized elliptic PDE. Finally,
Section VI concludes with some remarks on our approach and
applications to a wider array of problems.

II. SPARSE REGULARIZATION FOR PARAMETERIZED PDES

The sparse polynomial techniques proposed in this work
are applicable to general parameterized PDE problems of the

form: find u(·,y) : D ⇥ U ! R for all y 2 U such that

L(u(·,y),y) = 0, in D, (3)

where L is a differential operator defined on a spatio-
temporal domain D. Our development to the general CS/joint-
sparse polynomial approximation problem can be formulated
as follows. One first generates m samples y1, . . . ,ym in
U independently from the orthogonalization measure % as-
sociated with ( ⌫)⌫2J , for instance, uniform samples for
the Legendre basis and Chebyshev samples for Chebyshev
basis, see [9, Chapter 12], and solves the equation (3) at
these samples to form the normalized output vector u :=
(u(y1), . . . , u(ym))/

p
m as well as the normalized sampling

matrix A := ( ⌫(yi)/
p
m)1im, ⌫2J . Taking account that

the true unknown coefficient c = (c⌫)⌫2J approximately
solves the linear system

u = Az, z 2 V
N
, (4)

and further, c is compressible [4], it is reasonable to approx-
imate c by c#, the solution to the following problem

minz2VN kzkV,1 subject to kAz � ukV,2 
⌘

p
m
, (5)

where ⌘ relates to an estimate of the tail (2); or the equivalent
unconstrained convex minimization:

minz2VN kzkV,1 +
µ

2
kAz � uk2V,2, (6)

for appropriately chosen µ > 0. Here, the norm k · kV,q is
defined for c 2 V

N as kckV,q := (
P

⌫2J kc⌫k
q
V)

1/q . This
is arguably the most natural extension of the `1 minimization
approach, traditionally for real and complex signal recovery, to
the reconstruction of sparse generalized Hilbert-valued vectors.
We denote our approach simultaneous compressed sensing
(SCS). In depth description, analysis and application of SCS
for solving parameterized PDEs are provided in [6].

Problem (5) can be related to the joint-sparse basis pursuit
denoising problem as follows. Let (�r)r2N be an orthonormal
basis of V , then c⌫ 2 V has unique representation

c⌫ =
X

r2N
c⌫,r�r, with c⌫,r 2 R.

Each coefficient c⌫ corresponds to an R1⇥N vector
(c⌫,1, c⌫,2, . . . , c⌫,r, . . .)>, thus, c = (c⌫)⌫2J is completely
determined by the RN⇥N matrix bc = (c⌫,r)⌫2J ,r2N. Further-
more,

kckV,q =

 
X

⌫2J
kc⌫k

q
V

!1/q

=

0

@
X

⌫2J

 
X

r2N
|c⌫,r|

2

!q/2
1

A
1/q

⌘

 
X

⌫2J
kbc⌫kq2

!1/q

= kbck2,q,

where the matrix norm k · kp,q is defined as the `q norm
of the vector (kbc⌫kp)⌫2J , implying the equivalence of (5)
with the infinite-dimensional joint-sparse recovery problem.
In practice, one needs to employ a discretization over V to
be able to numerically solve (5) or (6). Any preferred method
of spatial/temporal discretization may be used, e.g., the finite
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element, difference, and volume methods. However, our strong
convergence result of forward-backward splitting in Section IV
is applicable to (6) without any discretization.

III. ERROR ESTIMATES FOR HILBERT-VALUED RECOVERY

Straightforward extensions of concepts and results from
compressed sensing and joint-sparse recovery can be made
to ensure uniform recovery of Hilbert-valued signals via
`V,1-relaxation. Well-known concepts such as the null space
property (NSP) and restricted isometry property (RIP) have
Hilbert-valued counterparts. In this section, we review Hilbert-
valued versions of the NSP and RIP to guarantee uniform
recovery for the mixed norm regularization in the presence
of noise or sparsity defects. We note that the extension of
these concepts to the Hilbert-valued recovery setting does not
require finite-dimensionality of the Hilbert space V . For more
detailed discussion and complete proofs of the results in this
section, we refer the interested readers to [6].

First, we define a Hilbert-valued version of the `2-robust
NSP, which guarantees the reconstruction of vectors c 2 V

N

(up to s largest components and up to a noise level).

Definition 1 (`V,2-robust null space property). The matrix
A 2 Rm⇥N is said to satisfy the `V,2-robust null space
property of order s with constants 0 < ⇢ < 1 and ⌧ > 0
if

kzSkV,2 
⇢
p
s
kzSckV,1 + ⌧kAzkV,2 (7)

8z 2 V
N
, 8S ⇢ [N ] with #(S)  s.

An RIP-type condition is required to quantify the sample
complexity of solving (5) to a prescribed accuracy. The
following result establishes the implication of the `V,2-robust
NSP from the standard RIP.

Proposition 1. Suppose that V is a separable Hilbert space,
and that the matrix A 2 Rm⇥N satisfies the RIP, that is

(1� �2s)kzk
2
2  kAzk22  (1 + �2s)kzk

2
2, (8)

8z 2 RN
, z 2s-sparse,

with �2s <
4p
41

. Then, A satisfies the `V,2-robust NSP of order
s with constants 0 < ⇢ < 1 and ⌧ > 0 depending only on �2s.

Proposition 1 implies that sample complexity results for
solving the standard `1 problem hold for the mixed norm
problem (5) as well.

In the parameterized PDE context, with error estimates as in
[19, Theorem 2] for quasi-optimal approximations, we are able
to provide convergence rates for approximations to parameter-
ized PDEs obtained through the mixed norm regularization.
First, we assume that the solution u has parametric expansion
with coefficients (c⌫)⌫2F as in (1) satisfying kc⌫kV . e

�b(⌫)

for every ⌫ 2 F , with b(⌫) obeying [19, Assumption 3]. For
brevity, we do not detail that assumption herein, but remark
that it is satisfied by most parameterized PDE models we are
aware of.

Theorem 1. For any " > 0, assume that the solution u to
(3) with parametric expansion (1) has coefficients (c⌫)⌫2F

satisfying kc⌫kV  e
�b(⌫) for every ⌫ 2 F with b : [0,1)d !

R also satisfying [19, Assumption 3]. Denote by Js the set of
indices corresponding to the s largest bounds of the sequence
(e�b(⌫))⌫2F . Let J be such that Js ✓ J , and assume that
the number of samples m 2 N satisfies

m � C⇥2
smax{log2(⇥2

s) log(N), (9)

log(⇥2
s) log(log(⇥2

s)N log(s))},

with ⇥ = sup⌫2J k ⌫kL1(U) and N = #(J ). Then with
probability 1�N

� log(s), the solution c# of

minimizez2VN kzkV,1 s.t. kAz � ukV,2 
⌘

p
m

(10)

approximates u with asymptotic error
�����u�

X

⌫2J
c#⌫  ⌫

�����
L2

%(U ;V)

 C"
p
s exp

"
�

✓
 s

(1 + ")

◆1/d
#
,

(11)

where , C" > 0 are independent of s.

IV. FORWARD-BACKWARD ALGORITHM FOR
HILBERT-VALUED RECOVERY

In this section, we present a forward-backward splitting
algorithm for solving problem (6) over the real Hilbert space
V
N . Assuming µ = 1 for simplicity, define T1 and T2 to be the

subdifferential and gradient of the k ·kV,1 and 1
2kA(·)�uk2V,2

parts of (6), respectively, and T = T1+T2. The algorithm can
be derived as follows. Given ⌧ > 0, we have

0 2 T (x) () x = (I + ⌧T1)
�1(I � ⌧T2)x. (12)

The last identity in (12) leads to the forward-backward split-
ting algorithm: given initial guess x0

2 H := {x 2 V
N :

kxkV,2 < 1}, compute

xk+1 = (I + ⌧T1)
�1(I � ⌧T2)x

k
, (13)

where xk denotes the approximation at k-th iterate. Letting

J⌧ := (I+ ⌧T1)
�1

, G⌧ := (I� ⌧T2), and S⌧ := J⌧ �G⌧ ,

then (13) can be written as xk+1 = S⌧ (xk). A straightforward
derivation yields:

G⌧ (x) = x� ⌧A⇤(Ax� u), (14)

J⌧,j(x) =
xj

kxjk2
·max{kxjk2 � ⌧, 0}, 1  j  N. (15)

One can observe that the forward operator G⌧ resembles a step
of gradient descent algorithm with stepsize ⌧ . The backward
operator J⌧ , on the other hand, is a soft thresholding step
associated with proximal point method.

Under a standard assumption on the stepsize ⌧ , namely 0 <

⌧ < 2/kA⇤Ak2, we can obtain some nonexpansive properties
for G⌧ and J⌧ . In particular, G⌧ is nonexpansive, i.e.,

kG⌧ (v)�G⌧ (w)k2,2  kv �wk2,2 8v,w 2 H, (16)

and J⌧ is row-wise firmly nonexpansive, i.e., 8v,w 2 H,
8j 2 [N ] := {1, 2, . . . , N}

kJ⌧ (vj)� J⌧ (wj)k
2
2

 kvj �wjk
2
2 � k(I � J⌧ )vj � (I � J⌧ )wjk

2
2.

(17)
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see [2, Chapter 4]. To prove the strong convergence of
the forward-backward splitting algorithm for Hilbert-valued
recovery in infinite-dimensional setting, we consider certain
partition of the index set [N ] into two subsets L and E,
L ⇢ (supp(x⇤))c and E � supp(x⇤) where x⇤ is a solution
to (6), as they require different treatments, see [5], [11]. With
properties (16)-(17) in hand, our result is obtained in three
steps:

1) Using a partitioning technique from [11], establish finite
convergence xk

j ! x⇤
j for every j 2 L.

2) Establish an angular convergence result on the extended
support set E.

3) Combine the known general weak convergence of the
forward-backward algorithm, see, e.g., [2], with our an-
gular convergence result to obtain convergence in norm
on E, and hence strong convergence since L[E = [N ].

For more details on the above approach, see [5]. The
established result can then be summarized as follows.

Theorem 2. Let 0 < ⌧ < 2/kA⇤Ak2 and (xk) be
the sequence generated by the forward-backward iterations
xk+1 = S⌧ (xk) starting from any x0

2 H. Then (xk)
converges strongly to an element x⇤

2 V
N solving (6).

V. NUMERICAL EXPERIMENTS ON PARAMETERIZED
ELLIPTIC PDE MODELS

In this section we present numerical experiments demon-
strating the efficiency of the proposed approach in approx-
imating the solution of the following parameterized elliptic
PDE: for all y 2 U , find u(·,y) : D ! R such that

⇢
�r · (a(x,y)ru(x,y)) = f(x) in D,

u(x,y) = 0 on @D.
(18)

Here D = [0, 1]2, f ⌘ 1, the diffusion coefficient is given by

a(x,y) = 10 + y1

✓p
⇡L

2

◆1/2

+
dX

i=2

⇣i #i(x) yi (19)

⇣i := (
p
⇡L)1/2 exp

 
�
�⌅

i
2

⇧
⇡L
�2

8

!
, for i > 1,

#i(x) :=

⇢
sin
�⌅

i
2

⇧
⇡x1/Lp

�
, if i is even,

cos
�⌅

i
2

⇧
⇡x1/Lp

�
, if i is odd.

or its log transformed version log(a(x,y) � 0.5), and
yi are uniform random variables on (�

p
3,
p
3). Conver-

gence is compared against “highly-enriched” reference sparse
grid stochastic collocation approximations which we denote
uh,ex(x,y), see [18]. All approximations (including the en-
riched reference solution) are computed on fixed finite element
meshes Th, and our enriched SC approximation is computed
using Clenshaw-Curtis (CC) abscissas with high level Lex.
We compare performance using the relative errors of the
expectation and standard deviation in the H

1
0 (D)-norm.

In our plots and discussion, we use the following abbre-
viations. For the SCS method, we use “SCS-TD” to denote
approximations obtained using the SCS method with the
total degree (TD) subspace. For the stochastic Galerkin (SG)
method, we use “SG-TD” to denote the SG approximation

with TD subspace, see, e.g., [10], [20]. The stochastic collo-
cation (SC) method with CC points and doubling growth rule
is denoted “SC-CC,” see [14]. The Monte Carlo approximation
is denoted “MC.”

We follow convention from [1], identifying stochastic de-
grees of freedom (SDOF) as the number of random sample
points m for MC and SCS, and sparse grid points mL for
SC with level L. For SG, we define SDOF to be N , the
cardinality of the index set used in construction. We include
the SG method only to compare the L

2(U , d%)-optimal (w.r.t.
SG SDOF) error of the Galerkin projection against the error
of the sampling-based approximations.

We employ the orthonormal Legendre series for the para-
metric discretization of the SG and SCS methods. For the MC
and SCS methods, the random samples (yi)mi=1 are drawn
from the uniform distribution %. We average the random
sampling results over 24 trials, fixing the initial seed for
the pseudorandom number generator on each trial, and then
solving each trial’s problem with the same set of m samples
when plotting convergence.

Figures 1 & 2 display the achieved results. For highly
anisotropic problems, the compressed-sensing based approach
is able to naturally detect the underlying anisotropy in refine-
ment. We note that, for the problem under consideration in
Figure 2, we are unable to obtain an SG-TD approximation due
to the difficulty of solving the nonlinearly coupled SG systems,
see [7] for more details. We also expect that incorporation of
anisotropic weighting schemes such as those considered in [1]
and weighted `1-minimization techniques such as those from
[3] to improve results for the problems considered. We leave
a further study of such improvements to a future work.

101 102 103 104
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10-5

10-4

10-3

102 103 104

10-3

10-2

Fig. 1: Comparison of relative errors in expectation (left)
and standard deviation (right) in the H

1
0 (D) norm for the

L = 2, 3 stochastic collocation (SC-CC), p = 1, 2 stochastic
Galerkin (SG-TD), Monte Carlo (MC), and total degree order
p = 2 with N = 5151 simultaneous compressed sensing
(SCS-TD) methods for solving (18) with coefficient (19) and
correlation length Lc = 1/2 in d = 100 dimensions. All
approximations computed on a finite element mesh with 206
degrees of freedom corresponding to a maximum mesh size
of h ⇡ 1/16.

VI. CONCLUDING REMARKS

In this work we presented an overview of a novel sparse
polynomial approximation technique, enabling global recovery
of solutions to parameterized PDEs. Our approach, based on
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Fig. 2: Comparison of relative errors in expectation (left)
and standard deviation (right) in the H

1
0 (D) norm for the

L = 2, 3 stochastic collocation (SC-CC), Monte Carlo (MC),
and total degree order p = 4 with N = 5985 simultaneous
compressed sensing (SCS-TD) methods for solving (18) with
coefficient log(a(x,y) � 0.5) with a(x,y) from (19) and
correlation length Lc = 1/8 in d = 17 dimensions. All
approximations computed on a finite element mesh with 713
degrees of freedom corresponding to a maximum mesh size
of h ⇡ 1/32.

extensions of compressed sensing and joint-sparse recovery,
treats the solution vector as an element of a tensor product
of real Hilbert spaces V . The key difference in our technique
is the use of a mixed norm involving the energy norm of
the associated PDE problem and the standard vector `1 norm.
Within this framework, we are able to prove uniform recovery
results through straightforward extensions of concepts such as
the restricted isometry and null space properties. Moreover, by
combining extensions of error estimates for the standard basis
pursuit denoising problem with quasi-optimal error estimates
for sparse approximation of parameterized PDE systems, we
are able to derive sub-exponential convergence of our method.
For more details see [6].

We have also presented a modification of the standard
forward-backward splitting algorithm for Hilbert-valued re-
covery. As the considered convex optimization problem is
posed over an infinite dimensional Hilbert space, new tech-
niques were needed to establish its convergence properties.
By deriving a novel angular convergence result from the firm
nonexpansiveness of the soft-thresholding operator, we are
able to prove the strong convergence of the algorithm in the
considered setting.

Finally, we presented numerical results on the application
of our approach to the approximation of solutions to both
affinely and non-affinely parameterized elliptic PDEs. We
compare our results with those obtained using the stochastic
Galerkin, stochastic collocation, and Monte Carlo methods.
The achieved results are positive, highlighting a key benefit
of compressed sensing-based approaches, namely the ability
to detect underlying problem anisotropy in refinement.
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