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Abstract—The paper addresses the problems of network anal-
ysis and network security, outlining a computationally feasible
method of monitoring networks, and detecting (hyper)-active
increase in subnetwork activity, such as one would see in viral
or network attack activity. Additionally, it outlines a systematic
method of detecting the source of activity, and if needed, isolate
and/or shut-down subcomponents of the network.

I. NETWORK TOMOGRAPHY

A goal of network security is to keep traffic moving and
keep it free of viruses. One use of network tomography allows
the creation of a system that will detect viruses as early
as possible and work simply on the geometry or structure
of the network itself. We have developed a computation-
ally efficient method to monitor traffic. We monitor specific
connected subsets of arbitrary weighted graphs (regions of
interest) from the input output map corresponding to paths
that have crossed such regions and from this, to determine,
for instance, congested areas or even anticipate areas that will
get congested. This would allow a system manager to take
measures to avoid the stoppage of traffic. Viruses are detected
by observing a rapid increase in network activity. Results on
network tomography give that the network monitoring can
be associated to a problem similar to electrical impedance
tomography (EIT) on graphs and indicate how it is also
associated to the Radon transform on trees. From this, we
develop a strategy to determine the weight ω for the case of
general weighted graphs.

Given that we are working in graphs, we will need discrete
versions of our tools, e.g., discrete Fourier and Radon trans-
forms, and discrete Laplacians. We discuss weighted graphs,
and how the weights change due to an increase of traffic. In
this case, the network configuration remains the same. The
weighted graph problem looks at a tree in a Riemannian
manifold with assumptions that it is connected, or that we
can get from one node to any other node in the network. We
consider relatively simple regions of interest in a graph and
suitable choices for the data of the ω-Neumann boundary value
problem to produce a linear system of equations for the values
of ω. The other problem looks at disruptions that occur when a
hole appears in the network or an edge “ceases” to exist. In this
case, the topology of the network has changed. We will not be
addressing this problem, and refer the interested reader to the
work of Robinson et al. [14]. For our development, we assume
a stable network topology. Very deep work of Berenstein et al.
[1], [2], [4], [5] on network tomography gives that the network
monitoring can be associated to a problem similar to electrical

impedance tomography (EIT) on graphs and indicate how it
is also associated to the Radon transform on trees. From this
work, we develop a strategy to determine the weight ω for the
case of general weighted graphs. The natural tool to use in this
context is the Radon Transform. We discuss it next, referring
to [5], [11]. The Radon Transform R(f) of f ∈ L1(R2) is the
mapping defined by the projection or line integral of f along
all possible lines L, i.e., for ξ ∈ T, x ∈ R2 and lines p = ξ ·x,

R(f) =
∫
f(x)δ(p− ξ · x) dx .

An important computation gives R(e−π(x2+y2)) = e−πp2
,

i.e., the Gaussian. In higher dimensions, given a function
f ∈ L1, the Radon Transform of f is determined by inte-
grating over each hyperplane in the space. Clearly, R(f) is
linear, and is an even homogeneous function of degree −1,
i.e., R(f)(sp, sξ) = |s|−1R(f)(p, ξ) . Letting ∆ denote the
Laplacian over the spatial variables,R(∆f) = ∂2R(f)

∂p2 , where
we note that the right-hand side is just the one dimensional
Laplacian. If f also depends on time, we introduce the wave
operator �n = ∆− ∂2

∂t2 , getting

R(�nf) = �1R(f) .

Therefore, the Radon transform in n dimensions is localizable
if and only if the wave equation is localizable. One can express
this identity by saying that the Radon transform intertwines the
wave operator �n with the wave operator �1. It follows that
the Radon transform cannot be localized in even dimensions.
The n-dimensional Radon Transform Rn is related to the n
dimensional Fourier Transform Fn, by

Rn(f) = F−1
1 Fn(f) ,

the Fourier slice formula. This allows us to use Fourier
methods in computations, and get relations of shifting, scaling,
convolution, differentiation, and integration. Radon inversion
is necessary to recover desired information about internal
structure. The formula can be derived in an even and odd
part, then unified analogously to the Fourier series. The unified
inversion formula is f = R†Υ0R(f) , where Υ0 is the
Helgason operator (see [11]).

We are interested in the discrete Radon transform on trees
and its inversion formula. A graph G is a finite or countable
collection V of vertices vj , j = 0, 1, ... and a collection E of
edges ejk = (vj , vk), i.e., pairs of vertices. Given two vertices
u and v, we say they are neighbors if (u, v) is an edge and



denote this by u ∼ v. A geodesic from one point to another
is a collection of pairwise distinct vertices. Closed geodesics
are also known as cycles, hence one can say that a tree is a
connected graph without cycles. We say that a function f on
the tree T is L1 if

∑
|f(v)| < ∞, where the sum is taken

over all vertices in T . Given a geodesic Γ in T , we define
the Radon transform on Γ by Rf(Γ) =

∑
v∈Γ f(v) . Given

a node v, let η(v) be the number of edges that contain v as
an endpoint. This number is called the degree of the node.
We will assume throughout that we always have η(v) ≥ 3
to ensure that the Radon transform is injective. Under these
conditions, the Radon transform on a tree is invertible.

We will derive inversion in the case where T is homo-
geneous and η(v) ≥ 3, following the development in [5].
Given v, w two vertices in T that are connected by a path
(v = v0, . . . , vm = w), the distance between v and w is m,
and we denote this by [v, w] = m. Let v(n) be the number
of vertices of T at a distance n from a fixed vertex of T . We
have that v(n) = 1 if n = 0, v(n) = (η(v) + 1)(η(v))n−1 if
n ≥ 1. For f ∈ L1(T ), let µnf(v) be the average operator
defined by

µnf(v) =
1

v(n)

∑
[v,w]=n

f(w) , v ∈ T .

It can be shown that µn is a convolution with radial kernel
hn(v, w) = 1/v(n) if [v, w] = n, hn(v, w) = 0 if [v, w] 6= n.
Let R∗ be the dual Radon transform defined for Φ ∈ L∞(Γ)
by

R∗(Φ)(v) =
∫

Γv

Φ(α)dρv(α) ,

for each vertex v ∈ T , with respect to a suitable family {ρv :
v ∈ T} of measures on Γv , where Γv is the set of all of the
geodesics containing the vertex v.

Let β = q/(2(q + 1)). In order to obtain the inversion of
R, we observe that RR∗ acts as a convolution operator given
by the radial kernel h = βh0 +

∑∞
n=1 2βhn . The identity

R∗R = βµ0 +
∑∞

n=1 2βµn holds in L1(T ), where the series
is absolutely convergent in the convolution operator norm on
L2(T ), thus providing a bounded extension of RR∗ to L2(T ).
The unique bounded extension to L2(T ) of the operator RR∗

is invertible on L2(T ), and its inverse is the operator

E =
2(q + 1)3

q(q − 1)2

[
µ0 +

∞∑
n=1

2(−1)nµn

]
,

which acts as the convolution operator with the radial kernel

2(q + 1)3

q(q − 1)2

[
h0 +

∞∑
n=1

2(−1)nhn

]
.

As above, this series converges absolutely in the convolution
operator norm on L2(T ); in particular, E is bounded. This
gives us the following.

Theorem I.1. The Radon transform R : L1(T ) −→ L∞(Γ)
is inverted by

ER∗Rf = f .

In hyperbolic space, we define the Radon Transform of
f by taking the integral over each geodesic in the space.
Because of the hyperbolic distance, we have to assume that f
is a continuous function with exponential decrease. Helgason
has shown that the Radon Transform is a 1 − 1 mapping on
the space of continuous functions in hyperbolic space with
exponential decrease (see [11], pp. 111–133). This then makes
it the tool of choice when working in that geometry. Inversion
again splits into even and odd dimensions (see [11], pp. 127–
133).

Conventional tomography is associated to the Radon trans-
form in Euclidean spaces. In comparison, electrical impedance
tomography, or EIT, is associated to the Radon transform in
the hyperbolic plane.

There exists two distinct variations to the problems that
could arise in a network – increased traffic and changes in
network topology. We discuss weighted graphs and how the
weights change due to an increase of traffic. In this case, the
network configuration remains the same. We consider rela-
tively simple regions of interest in a graph and suitable choices
for the data of the ω-Neumann boundary value problem to
produce a linear system of equations for the values of ω. We
assume a stable network topology.

To address the internet traffic problem, we must begin with
the structure of the internet. Smale [17] gives us insight as to
how one can use the tools of differential geometry to study
circuits. Munzner [1], [3], [15] has proven that the internet has
a hyperbolic structure. She showed that the natural geometric
domain to use is the real hyperbolic space of dimensions two
or three, the choice of the dimension being related to the
density of the network.

The internet also has a weighted graph structure. In par-
ticular, it can be modeled as a weighted tree. Therefore, in
order to deal with the network problems we are interested in,
we need to develop a calculus. We define a graph G, vertices
V , and edges E as before. For every edge, we can associate
a non-negative number ω corresponding to the traffic along
that edge. The value ω is the weight of the edge. A geodesic
from one point to another is a collection of pairwise distinct
vertices.

We can think of this in terms of electrical circuits. The value
ω(p, q) is called the conductance of (p, q) and 1/ω(p, q) the
resistance of (p, q). Also ω is the conductivity. A function
u : V → R gives a current across each edge (p, q) by Ohm’s
law, the current from p to q, I = ω(p, q)(u(p) − u(q)). The
function u is called ω-harmonic if for each interior node p,∑

q∈N(p) ω(p, q)(u(q)− u(p)) = 0, where N(p) is the set of
nodes neighboring p. In other words, the sum of the currents
flowing out of each interior node is zero, which is the discrete
equivalent of Kirkhoff’s law.

Let Φ a function defined at the boundary nodes. The
network will acquire a unique ω-harmonic function u with
u(p) = Φ(p) for each p ∈ ∂G, i.e., Φ induces u and u is the
potential induced by Φ. Considering a conductor (p, q), the
potential drop across this conductor is Du(p, q) = u(p)−u(q).
The potential function u determines a current IΦ(p) through



each boundary node p, by IΦ(p) = ω(p, q)(u(p) − u(q)), q
being an interior neighbor of p. The boundary function Φ
is called the Dirichlet data and the boundary current IΦ is
called Neumann data. As in the continuous case, for each
conductivity ω on E, the linear map ΛωΦ from boundary
functions to boundary functions, defined by ΛωΦ = IΦ, (the
input-output map) is called the Neumann-to-Dirichlet map.
The problem to consider is to recover the conductivity ω from
ΛωΦ.

Electrical impedance tomography ideas can be effectively
used in this context to determine the conductivity ω (weight) in
the network from the knowledge of the Neumann-to-Dirichlet
map associated to ω. They show that the conductivity ω can
be uniquely determined and give an algorithm to compute ω.
They also show the continuity of the inverse.

We do calculus on a weighted graph G as follows. We define
the degree of a node x by dωx =

∑
y∈V ω(x, y). To integrate

a function f : G −→ R, we compute∫
V

fdω =
∑
x∈V

f(x) dωx .

The directional derivative Dω,yf(x) and gradient ∇ωf(x) are
given by, for y ∈ V ,

Dω,yf(x) = [f(y)−f(x)]

√
ω(x, y)
dωx

,∇ωf(x) = (Dω,yf(x)),

respectively. The weighted ω-Laplacian ∆ωf is given by

∆ωf =
∑
y∈V

[f(y)− f(x)]
ω(x, y)
dωx

, x ∈ V .

If S is a subgraph of G, we define the boundary of S, ∂S, by

∂S = {z ∈ V : z 6∈ S and z ∼ y for y ∈ S} .

Also, let S̄ = S ∪ ∂S. The outward normal derivative ∂f
∂nω

(z)
at z ∈ ∂S is given by

∂f

∂nω
(z) =

∑
y∈S

[f(z)− f(y)]
ω(z, y)
d′ωz

,

where d′ωz =
∑

y∈S ω(z, y).
In the case of planar finite weighted graphs, Berenstein and

Chung (see [2], [3]) gave the uniqueness result, that is, any
two weights ω1 and ω2 must coincide if the Neumann-to-
Dirichlet map associated to ω1 is equal to the Neumann-to-
Dirichlet map associated to ω2. The values of ω will increase
or decrease depending on traffic. We can then compute the
discrete Laplacian derivative ∆ of a weighted subgraph (∆ω),
getting the rate of traffic on the subnetwork (Neumann data).
We can compute the weights on individual edges from the
boundary value data (Dirichlet data). Below we will see from
the following theorems how these conditions hold.

First, we must mention why the boundary will be studied.
The Minimum and Maximum Principle points out why we
focus on the boundary conditions within the network.

Theorem I.2. Let S be a subgraph of a host graph G with a
weight ω and f : S → R be a function.

1) If ∆ωf(x) ≥ 0, x ∈ S and f has a maximum at a vertex
in S, then f is constant.

2) If ∆ωf(x) ≤ 0, x ∈ S and f has a minimum at a vertex
in S, then f is constant.

3) If ∆ωf(x) = 0, x ∈ S and f has either a minimum or
maximum in S, then f is constant.

4) If ∆ωf(x) = 0, x ∈ S and f is constant on the boundary
∂S, then f is constant.

The Dirichlet boundary condition can be represented using
the discrete analogue of the Laplacian. We let 〈f, g〉X =∑

x∈X f(x)g(x).

Theorem I.3. Let S be a subgraph of a host graph with a
weight ω and σ : ∂S → R be a given function. Then the
unique solution f to the Dirichlet boundary value problem{

∆ωjfj(x) = 0 x ∈ S,
f |∂S = σ

can be represented as

f(x) = −〈γω(x, ·), Bσ〉y∈S , x ∈ S,

where
Bσ(y) =

∑ σ(z)ω(y, z)
dωy

, y ∈ S.

To see the other side, we look at the Neumann condition
which uses integration by parts and Green’s formula in this
theorem.

Theorem I.4. Let S be a subgraph of a host graph G with a
weight ω and let f : S → R, g : S → R, and ψ : ∂S → R be
functions with

∫
∂S
ψ =

∫
S
g. Then the solution to the Neumann

boundary value problem{
∆ωj

f(x) = g(x) x ∈ S,
∂f

∂ωn (z) = ψ(z) z ∈ ∂S

is given by

f(x) = a0 + 〈Ωω(x, ·), g〉S − 〈Γω(x, ·), ψ〉∂S ,

where Ωω is the Green’s function of ∆ω on the graph S as a
new host graph of S and a0 is an arbitrary constant.

Theorem I.5 (Dirichlet’s Principle). Assume that f : S → R
is a solution to {

−∆ωf = g onS,
f |∂S = σ.

Then
Iω[f ] = minh∈AIω[h].

The key ingredient is the attempt to understand what hap-
pens in a network from “boundary measurements,” that is, to
determine whether all of the nodes and routers are working or
not and also measure congestion in the links between nodes by
means of introducing test packets in the “external” nodes, the
routers. To understand the boundary measurements, we must
look at the Neumann-to-Dirichlet map. We must decompose
and understand how this map will allow us to reduce the



network to a system of linear equations. With this method, we
can compute the actual weights from the knowledge of the
Dirichlet data for convenient choices of the input Neumann
data in a way similar to that done for lattices. In the context
of electrical networks, the map, N , takes currents on ∂Ω and
gives voltages on ∂Ω and is represented by a Neumann matrix
N by the Green function of this Neumann boundary value
problem. The following is the Neumann-to-Dirichlet map.

Theorem I.6. Let ω1 and ω2 be weights with ω1 ≤ ω2, and
f1, f2 : S → R be functions satisfying for j = 1, 2,{

∆ωjfj(x) = 0 x ∈ S,
∂fj

∂nωj
(z) = ψ(z) z ∈ ∂S

for any given function ψ : ∂S → R with
∫

∂S
ψ = 0, j = 1, 2.

If it is assumed that

(i) ω1(z, y) = ω2(z, y) on ∂S × ∂S,

(ii) f1|∂S = f2|∂S ,

then  f1 ≡ f2, on S and
ω1(x, y) = ω2(x, y),
whenever f1(x) 6= f1(y), or f2(x) 6= f2(y).

The discrete Radon transform is injective in this setting, and
therefore invertible. If increased traffic is detected, we can use
the inverse Radon transform to focus in on particular signals.
Given that these computations are just matrix multiplications,
the computations can be done in real time on suitable subnet-
works.

Finally, a theorem by Berenstein and Chung give us unique-
ness. We can solve for the information via the Neumann matrix
N . We then use the Neumann-to-Dirichlet map to get the
information as boundary values. Uniqueness carries through.
Thus, each subnetwork is distinct and can be solved indi-
vidually. This allows us to piece together the whole network
as a collection of subnetworks, which it turn, can be solved
uniquely as a set of linear equations. The key equation to solve
is the following in the end. Set S be a network with boundary
∂S, let ω1, ω2 be weights on two paths in the network, and let
f1, f2 be the amount of information on those paths, modeled
as real valued functions. Then we wish to solve, for j = 1, 2

∆ωjfj(x) = 0 x ∈ S
∂fj

∂nωj
(z) = ψ(z) z ∈ ∂S∫

S
fj dωj = K .

Looking at the internet as modeled as a hyperbolic graph
allows for the natural use of the Neumann-to-Dirichlet map,
and thus the discrete Radon Transform. The inverse of the
discrete Radon Transform ER∗R completes the problem with
its result giving the interior data.

We finish by discussing graph decompositions. Given an
arbitrary network, we look to develop a scheme to decompose
the structure so that it is a union of hyperbolic networks. We
can pick any given node in a graph, and create the node’s

subgraph as an m-ary tree. The leaf nodes of each m-ary tree
are further replaced by their own neighborhood m-ary trees.
In this way, a K-level m-ary tree is recursively constructed for
each vertex. The decomposition is not unique, which can be
seen simply by altering the starting vertex of any subgraph.
Using spectral graph sampling methods, it may be possible
to replace the original graph by a union of much smaller
graphs. The challenge is to ensure that the union of subgraphs
is a good representation of the original graph. The current
state of the art on this decomposition is the BC (Block Cut-
vertex) tree, which represents the decomposition of a graph
into biconnected components [12], [13]. They introduce two
new families of proxy graph methods, BCP-W and BCP-
E, tightly integrating graph sampling methods with the BC
(Block Cut-vertex) tree, which represents the decomposition
of a graph into biconnected components. The next tasks lie
in computationally efficient graph decomposition, determining
regions of interest, and decomposing into unions of hyperbolic
trees.
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