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Abstract—The binary-valued images usually represent shapes.
Therefore, the recovery of binary images from samples is of-
ten linked with recovery of shapes, where certain parametric
structures are assumed on the shape. In this paper, we study the
recovery of shape images with the perspective of low-rank matrix
recovery. The matrix of such images is not automatically low-
rank. Therefore, we consider the Hankel transformation of binary
images in order to apply tools in low-rank matrix recovery. We
introduce an ADMM technique for the reconstruction which is
numerically confirmed to yield suitable results. We also analyze
the sampling requirement of this process based on the theory of
random matrices.

I. INTRODUCTION

Shape images or binary-valued images are an important
part of various applications such as medical imaging [1],
millimiter-wave imaging [2], shape processing [3], and im-
age segmentation [4]. The imaging devices, due to physical
constraints, usually convert these shapes into multi-level pixel
values (samples). Effectively, one can model the imaging
process as a convolution (with the point-spread function)
followed by sampling. Now, the recovery task is to retrieve
the sharp binary image based on the blurred samples.

The framework of signals with finite rate of innovation
(introduced in [5] and further developed in [6] for 1D signals)
has been a frequent tool in studying the shape images recently.
The shape images with bandlimited periodic boundaries are
studied in [7], where the Fourier coefficients of the boundary
curve are recovered by the annihilation filter of the FRI
framework. A related problem appeared in [8], where the
shape boundaries are assumed to be algebraic curves. The
annihilation filter technique is then used to estimate the
coefficients of the underlying polynomial. Piecewise constant
images with trigonometric boundaries are studied in [9]; the
task is to recover the image from low-pass Fourier samples.

The recovery of piece-wise constant images was recently
investigated in [10] using a combination of low-rank matrix
recovery and annihilation equations. Indeed, a link between 1D
FRI signals and low-rank matrices were previously established
in [11] based on the work of [12] in recovering spectrally
sparse signals via low-rank models.

The convolution part of the sampling process has a great
impact in the overal performance of the image recovery. In
[13], the blind recovery of the convolution kernel is consid-
ered. The goal is to simultaneously recover the kernel and
the image based on the uniform samples. For this purpose,
both the image and the kernel are assumed to belong to a

low-dimensional space, and the sampling pattern is taken as
random. In this paper, we combine the discrete model of [13]
with the sampling model of [8]; more precisely, we assume
to know the convolution kernel and apply a uniform sampling
strategy. Unlike most previous works in shape image recovery,
we do not use a parametric model for the shape boundaries.
In order to reconstruct the image, we first reformulate the
model using the concatenated block low-rank Hankel structure
introduced in [12]. Then, we propose an ADMM technique for
the recovery.

II. MODEL AND SAMPLING
In this work, we consider a discrete bi-level (black and

white) image of size N ×N with shape S defined as

I[m,n] =

{
1, [m,n] ∈ S
0, [m,n] ∈ Ω/S} (1)

where Ω = [N ] × [N ] is the image plane. We represent
boundaries of the shape with ∂S. The image I ∈ {0, 1}N×N
is convolved with a low-pass kernel 1 of size L×L represented
by {ϕ(i, j)}L,L

i=1,j=1. So, the resulting image after filtering has
the elements

di,j =
∑
Ω

∑
Ω

I[m,n]ϕ
[
m− i, n− j

]
(2)

∀i =
[
L1

2 + 1, N + L1

2

]
, j =

[
L2

2 + 1, N + L2

2

]
,

which forms the matrix D = [di,j ] ∈ RN×N . In the sampling
process, we only observe a subset Ωd ∈ [N ] × [N ] of D.
Our aim is to recover the binary image I ∈ {0, 1}N×N from
samples Ωd of D. Figure 1 depicts a schematic diagram of this
process. This means that we can show the resulting sampled
image R by

R = PΩd(ΦIΦT ), (3)

where PΩd is the projection operator onto the elements of
Ωd and zeros everywhere else. Φ ∈ RN×N is matrix corre-
sponding to the 2-D convolution in (2). We define 2-D Hankel
operator H (X) ∈ Rd2×(N−d+1)2 for any matrix X ∈ RN×N

as

H (X) :=


h(X1) h(X2) . . . h(XN−d+1)
h(X2) h(X3) . . . h(XN−d+2)

...
...

...
...

h(Xd) h(Xd+1) . . . h(XN )

 , (4)

1In the paper, we will occasionally use the term blurring kernel for this
kernel.
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Fig. 1: Sampling scenario, the image are convolved with a 2D
kernel followed by sampling to generate the measurements.
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Fig. 2: How to build low rank Hankel structure from a binary
image .

where h(xl) for the l-th row xl of the matrix X is given by

h(xl) :=


Xl,1 Xl,2 . . . Xl,N−d+1

Xl,2 Xl,3 . . . Xl,N−d+2

...
...

...
...

Xl,d Xl,d+1 . . . Xl,N

 , (5)

also, d is a scalar from the set [N ]. We also have pseudo-
inverse mapping of Hankel H† : Rd2×(N−d+1)2 → RN×N

which is equivalent taking the average value and putting it
back to the original coordinate.

III. MAIN RESULTS

A. Recovery From Uniform Spatial Samples
According to the presented theory in [12], the rank of

Hankel structure of sum of R discrete delta is less than R.
The Hankel structure reforms the matrix of data to be a
low rank structure. Therefore, if the input signal has sparse
representation in spatial domain its Hankel structure will be
low rank in the Fourier domain. So, by using the sparsity
assumption of the gradients of binary shapes, we build a
low rank Hankel structure from image which is shown in
Fig 2. In the first step, according to the low rankness of
Hankel structure, we reconstruct original image subject to
input samples. The Mathematical formulation of the problem
is equivalent to

minimize
g∈{0,1}N×N

rank(H(g))

subject to PΩd(ΦgΦT ) = D, (6)

where H(g) is the block Hankel structure formed by vertically
concatenation of the multi Hankel block structure as

H(g) =


H
(
F
(
W1(g)

))
H
(
F
(
W2(g)

))
...

 (7)

where H (g) ∈ Cd1×d2 is a block Hankel structure defined
in (4). F is Fourier transform and Wi represent ith invertable
sparsifying transforms. Note that, the sparse transforms can be
various transforms such as gradient, wavelet, etc. transforms.
For simplicity, in this article we consider one block Hankel as

H(g) = H
(
F
(
W(g)

))
. (8)

Due to searching in discrete space and non-convexity of rank
function, optimization in (6) is NP-hard. Hence, in order to
solve this problem, we relax both feasible set and objective
function such that

minimize
g∈[0,1]N×N

‖H(g)‖∗

subject to PΩd(ΦgΦT ) = D (9)

where ‖·‖∗ denotes the nuclear norm (or sum of the singular
values of the matrix) which is the convex relaxation of the
rank function. Equation (9) is a convex problem and it can be
efficiently solved by several methods.

B. Algorithm

In order to solve Hankel structured matrix recovery problem
from pixelized images, we employ an SVD free structured
rank minimization algorithm. The algorithm is based on the
following

‖A‖∗ = minimize
U,V∈CR×NA=UV∗

‖U‖2F + ‖V‖2F (10)

Therefore it can be reformulated as the nuclear norm mini-
mization problem under the matrix factorization constraint as

minimize
U,V,H(g)=UV∗,g∈[0,1]N×N

‖U‖2F + ‖V‖2F

subject to Φ̃gΦ̃T = D
(11)

where Φ̃ is the matrix Φ restricted to the rows indexed
by the first elements of Ωd. For solving (11), we employ
alternating direction method of multiplier (ADMM) technique.
By combining the two constraints, we have the following
Lagrangian cost function

L(U,V,g,λ1,λ2) :=
1

2
(‖U‖2F + ‖V‖2F )

+
µ1

2
‖H(g)−UV∗ + λ1‖2F +

µ2

2
‖Φ̃gΦ̃T −D + λ2‖2F

Now, g(k+1),U(k+1), and V(k+1) can be obtained by sequen-
tially applying the following alternative optimization problems

g(k+1) = arg min
g∈[0,1]N×N

µ1

2
‖H(g)−UV∗ + λ

(k)
1 ‖2F

+
µ2

2
‖D− Φ̃gΦ̃T + λ

(k)
2 ‖2F , (12)

U(k+1) =arg min
U

1

2
‖U‖2F

+
µ1

2
‖H(g(k+1))−UV∗(k) + λ

(k)
1 ‖2F , (13)

V(k+1) =arg min
V

1

2
‖V‖2F

+
µ1

2
‖H(g(k+1))−U(k+1)V∗ + λ

(k)
1 ‖2F . (14)



and the update of Lagrangian multipliers is given by

λ
(k+1)
1 =λ

(k)
1 +H(g(k+1))−U(k+1)V(k+1)∗,

λ
(k+1)
2 =λ

(k)
2 + D− Φ̃g(k+1)Φ̃T . (15)

Next, the subproblem for g, U, and V can be calculated by
taking the derivative with respect to each variable. Hence,

g(k+1) =J−1
(
µ1H∗(UV∗ − λ(k)

1 ) + µ2Φ̃
T (D + λ

(k)
2 )Φ̃

)
,

g(k+1) =P[0,1](g
(k+1)), (16)

where the linear operators J : CN×N 7→ CN×N is defined as

J (X) = µ1H∗H(X) + µ2Φ̃
T Φ̃XΦ̃Φ̃T. (17)

Also, the mapping operator P[0,1] would map the result on
[0,1] i.e

P[0,1](Z) =


1 Zi,j > 1

Zi,j 1 ≥ Zi,j ≥ 0

0 Zi,j < 0

Next for U and V we have

U(k+1) = µ1

(
H(g(k+1)) + λ

(k)
1

)
V(k)·(

IN + µ1V
∗(k)V(k)

)−1
, (18)

V(k+1) = µ1

(
H(g(k+1)) + λ

(k)
1

)
U(k+1)·(

IN + µ1U
∗(k+1)U(k+1)

)−1
, (19)

where IN represent a identity matrix with size N × N . The
initialize value of g(0) is came from the least square problem
i.e.

g(0) = argmin
X∈RN×N

‖Φ̃(X − I)Φ̃T‖2F (20)

which equals to g(0) = Φ̃†DΦ̃†T . Then, U(0) and V(0) can
be computed by the polar decomposition of H(g(0)) = UVT.
Also, we set λ(0)

1 = ∅ λ(0)
2 = ∅. The converge analyses

of ADMM algorithm for minimizing the sum of multi non-
smooth convex separable function have been studied in [14]
and showed that if the penalty parameter is chosen to be
sufficiently large the classical ADMM converges to the set
of stationary solutions.

C. Sufficient Number of Samples for Perfect Recovery

In this subsection, we will discuss how to obtain the required
number of samples for perfect recovery with a high probability.
In [12], the incoherence property is defined which is dependent
on relative locations of the frequencies. [10] showed that
this property can be related to the geometry of 2-D curves.
Similarly, our results depend on an incoherence measure which
is derived from the locations of the frequencies and the rows of
the matrix Φ. In fact, if the transform matrix Φ be an identity
matrix, then this parameter is equal to incoherence measure
defined in [10]. First we define the Dirichlet kernel as

D(k1, k2, r) :=
N2

d2
(
1− e

j2πdr1
N

1− e
j2πr1
N

)(
1− e

j2πdr2
N

1− e
j2πr2
N

) (21)

where r = (r1, r2) ∈ [N ] × [N ]. We defined also the Gram
matrices GL = D(d, ri−rj) and GR = D(N−d+1, ri−rj)
as where ri and rj are two-dimensional vectors on the image
boundary ∂S.

Definition 1: For image I[m,n] with Hankel structure H(I)
and rank R, the incoherence property is defined as

ρ1 = max

{
1

σmin(GL)
,

1

σmin(GR)

}
(22)

for all (i, j) ∈ [N ] × [N ]. Also, φI
ci denotes the ith column

of Φ−1 and φri is the ith row of Φ.
Definition 2: For the transform matrix Φ, the kernel param-

eter ρ2 is defined as the smallest number that satisfies

ρ2 ≥ max
(i,j)∈[N ]×[N ]

{
‖H†∗(φriφ

T
rj)‖2F ‖H(φI

ciφ
IT
cj )‖2F , (23)

‖H†∗(φriφ
T
rj)‖2‖H(φI

ciφ
IT
cj )‖21

}
(24)

where ‖.‖ denotes operator norm and ‖.‖1 is vector norm 1i.e.
the sum of the matrix elements.
Before presenting our main results, we express problem (9) in
random scenario as the following

minimize
g∈[0,1]N×N

‖H(g)‖∗

subject to PΩr (ΦgΦT ) = PΩr (ΦIΦT ) (25)

where Ωr is the collection of indices of the observed entries
which are picked randomly from [N ] × [N ]. Precisely, let
H(g) = UΣV∗ be singular value decomposition with rank
R. Then, the column-wise and row-wise projections of H(g)
are PU (X) = UU∗X, PV (X) = XVV∗, respectively. We
define sampling operator Ai,j : Rd1×d2 7→ Rd1×d2 for every
matrix Z ∈ Rd1×d2 as follows

Ai,j(Z) =
〈
Z,H†∗(φriφ

T
rj)
〉
H(φI

ciφ
IT
cj ). (26)

Also, the projection operator corresponding to the sample
locations can be defined as

AΩr (Z) =
∑

(i,j)∈Ωr

〈
Z,H†∗(φriφ

T
rj)
〉
H(φI

ciφ
IT
cj ) (27)

Hence, the recovery of I can be reformulated as a ma-
trix recovery problem in the lifted domain. The orthogonal
projection to Hankel structure matrices is represented by
A⊥(X) = I − A(X) with identity operator I. Since matrix
H(I) is Hankel structured, A⊥

(
H(I)

)
= 0. Then, (25) can be

reformulated as

minimize ‖X‖∗
subject to AΩr (X) = AΩr (H

(
I)
)

A⊥(X) = A⊥
(
H(I)

)
= 0.

(28)

To obtain exact recovery of convex optimization, it suffices
to produce an appropriate dual certificate and to ensure that
the norms of the projections PU

(
A(i,j)

)
and PV

(
A(i,j)

)
are

bounded. These conditions are stated in following lemma



(a) (b) (c)

Fig. 3: Reconstruction of a binary shape. (a) Original Shape,
(b) samples (size 30×30) (c) absolute difference between the
original shape and recovered (PSNR = 23.06 dB).

Lemma 1: Let H(I) be the Hankel structure of image I with
rank R and ρ1 and ρ2 be incoherence properties of I. then we
have

max
(i,j)∈[N ]×[N ]

{‖U∗A(i,j)‖2, ‖A(i,j)V‖2} ≤
ρ1ρ2csR

N2
, (29)

The sufficient number of samples for perfect recovery with
high probability can be achieved by using this upper bound
and by employing the approach of building the dual certificate
of [15]. The exact number of samples will be calculated in the
future work.

IV. SIMULATION RESULT

In this section, we simulate the recovery of binary shapes
from their samples. The original image is depicted in Fig. 3(a)
with a dimension of 120× 120 pixels. We employed 31× 31
pixels Gaussian filter as the kernel. The measured 30 × 30
pixels are drawn in Fig.3(b) with sampling rate of 4 pixels.
The proposed algorithm successfully reconstructs the shape
with PSNR of 23.06 dB. The error of reconstruction is shown
in Fig. 3(c). This simulation is repeated for another complex
shape in Fig.4.

V. CONCLUSION

In this paper, the problem of binary shape recovery from
its pixelized samples is discussed. In particular, we presented
a low rank structure for the model and formulated a convex
optimization problem for recovery. Also, we expressed a
theoretical guarantee for exact recovery with high probability
for the case of satisfied incoherency property. We proposed
an algorithm for image recovery by employing the ADMM
approach.
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