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Abstract—In this paper we consider the approximation of
bivariate functions by using the well-established filtered back
projection (FBP) formula from computerized tomography. We
establish error estimates and convergence rates for the FBP
reconstruction method for target functions f from a Sobolev
space Hα(R2) of fractional order α > 0, where we bound the
FBP reconstruction error with respect to the weaker norms of
the Sobolev spaces Hσ(R2), for 0 ≤ σ ≤ α. By only assuming
Hölder continuity of the low-pass filter’s window function, the
results of this paper generalize previous of our findings in [2]–[4].

I. INTRODUCTION

The method of filtered back projection (FBP) is a common
reconstruction technique in computerized tomography (CT)
and deals with recovering the interior structure of a scanned
object from X-ray scans. This data can be interpreted as a set
of line integrals of the object’s attenuation function and, thus,
the classical CT reconstruction problem reads as follows.

Problem 1 (Reconstruction problem): On domain Ω ⊆ R2,
reconstruct a bivariate function f ∈ L1(Ω) from given Radon
data {

Rf(t, θ) | t ∈ R, θ ∈ [0, π)
}
,

where the Radon transform Rf of f is defined as

Rf(t, θ) =

∫
{x cos(θ)+y sin(θ)=t}

f(x, y) d(x, y)

for (t, θ) ∈ R× [0, π).
Thus, the CT reconstruction problem seeks for the inversion

of the Radon transform R. For a comprehensive mathematical
treatment of R and its inversion, we refer to [6], [7], [12].
Due to the ill-posedness of the reconstruction problem, the
inversion formula, see (1), cannot be used in practice. Instead,
suitable low-pass filters of finite bandwidth L are employed
leading to an approximate reconstruction of the target function.

In our previous work [2], [3], we derived L2-error estimates
and convergence rates (as L→∞) for target functions f from
fractional Sobolev spaces Hα(R2) with α > 0. More recently,
we also proved Sobolev error estimates and convergence rates
in [1], [4]. In [2], [4] we considered low-pass filters whose
window functions are continuously differentiable on [−1, 1].
The proven rates of convergence saturate at integer order
depending of the differentiability of the window. The primary
goal of this paper is to generalize these previous results to
Hölder continuous windows. This will allow us to predict
saturation of the convergence rates at fractional order.

The outline of this paper is as follows. In Section II,
we consider the inversion of the Radon transform by the
classical FBP formula and show how the FBP can be stabilized
by using low-pass filters of finite bandwidth. This standard
approach leads us to an approximate reconstruction, whose
approximation quality will be evaluated in this paper. To this
end, in Section III, we discuss Sobolev error estimates for
target functions from Sobolev spaces of fractional order. In
Section IV, we finally derive asymptotic convergence rates for
the special case of Hölder-windows as the bandwidth goes to
infinity, where we will observe saturation at fractional order.

II. FILTERED BACK PROJECTION

The inversion of the Radon transform R is well understood
and given by the classical filtered back projection formula

f(x, y) =
1

2
B
(
F−1[|S|F(Rf)(S, θ)]

)
(x, y), (1)

which holds for f ∈ L1(R2)∩C (R2) (see [5, Theorem 6.2.]).
Here, the back projection Bh of h ∈ L1(R× [0, π)) is defined
as

Bh(x, y) =
1

π

∫ π

0

h(x cos(θ) + y sin(θ), θ) dθ

for (x, y) ∈ R2. Note that, up to the constant 1
π , the back

projection B is the adjoint operator of the Radon transform R.
We remark that the FBP formula is numerically unstable.

Indeed, by applying the filter |S| to the Fourier transform
F(Rf) in (1), especially the high frequency components of
Rf are amplified by the magnitude of |S| and, thus, the FBP
formula is in particular highly sensitive with respect to noise.

In order to reduce the noise sensitivity, a standard approach
is to replace the filter |S| in (1) by a low-pass filter AL of the
form

AL(S) = |S|W (S/L) for S ∈ R

with finite bandwidth L > 0 and an even window function
W ∈ L∞(R) with compact support supp(W ) ⊆ [−1, 1].

Note that by replacing the filter |S| in (1) by the low-pass
filter AL, the reconstruction of f is no longer exact and we
only get an approximate FBP reconstruction, denoted by fL.

For target functions f ∈ L1(R2) the reconstruction fL is
defined almost everywhere on R2 (see [1, Proposition 3.1])
and the resulting approximate FBP formula can be simplified
as

fL =
1

2
B
(
F−1AL ∗ Rf

)
. (2)



Moreover, fL belongs to L2(R2) (see [1, Proposition 4.2]) and
can be expressed in terms of the target function f via

fL =
1

2
B
(
F−1AL ∗ Rf

)
= f ∗KL, (3)

where the convolution kernel KL : R2 → R is defined as

KL(x, y) =
1

2
B
(
F−1AL

)
(x, y) for (x, y) ∈ R2.

For the sake of brevity, we call any application of the
approximate FBP formula (2) an FBP method. Therefore, each
FBP method provides one approximation fL to f , fL ≈ f ,
whose quality depends on the choice of the low-pass filter AL.

In the following, we analyse the intrinsic error of the FBP
method which is incurred by the use of the low-pass filter AL,
i.e., we wish to analyse the reconstruction error

eL = f − fL

with respect to the filter’s window W and bandwidth L.
We remark that pointwise and L∞-error estimates on eL

were proven by Munshi et al. in [9]. Their theoretical results
were further supported by numerical experiments in [10]. Error
bounds for the Lp-norm of eL, in terms of an Lp-modulus of
continuity of f , were proven by Madych in [8].

In [1]–[4] we derived error estimates and convergence rates
for target functions from fractional Sobolev spaces Hα(R2).
Let us recall that the Sobolev space Hα(R2) of order α ∈ R
is defined as

Hα(R2) =
{
f ∈ S ′(R2) | ‖f‖α <∞

}
,

where

‖f‖2α =
1

4π2

∫
R2

(
1 + x2 + y2

)α |Ff(x, y)|2 d(x, y)

and S ′(R2) denotes the space of tempered distributions on R2.
We remark that in relevant applications of (medical) image

processing, Sobolev spaces of compactly supported functions,

Hα
0 (Ω) =

{
f ∈ Hα(R2) | supp(f) ⊆ Ω

}
,

on an open and bounded domain Ω ⊂ R2, and of fractional
order α > 0 play an important role (cf. [11]). In fact, we can
consider the density of an image in Ω ⊂ R2 as a function
from the Sobolev space Hα

0 (Ω) whose order α is close to 1
2 .

III. ERROR ANALYSIS

In this section, we analyse certain Sobolev norms of the
inherent FBP reconstruction error eL for target functions f
from the Sobolev space Hα(R2) of fractional order α > 0. To
this end, we summarize our Hσ-error estimates in [1], [2] for
0 ≤ σ ≤ α. As we rely on these results in our discussion of
Hölder-windows in Section IV, we recall some details for the
reader’s convenience.

Let us assume that f ∈ L1(R2)∩Hα(R2) for some α > 0.
We first show that the approximate FBP reconstruction fL
belongs to the Sobolev space Hσ(R2) for any 0 ≤ σ ≤ α.

Due to [1, Proposition 4.1], the convolution kernel KL

belongs to C0(R2)∩L2(R2) and its Fourier transform satisfies

FKL(x, y) = WL(x, y) for almost all (x, y) ∈ R2.

Here, the bivariate window WL ∈ L∞(R2) is defined as

WL(x, y) = W
(r(x, y)

L

)
for (x, y) ∈ R2,

where
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

This in combination with representation (3) for fL yields

‖fL‖2σ =
1

4π2

∫
R2

(
1 + r(x, y)2

)σ |(WL · Ff)(x, y)|2 d(x, y)

≤
(

sup
r(x,y)≤L

|WL(x, y)|2
)
‖f‖2α = ‖W‖2L∞(R) ‖f‖

2
α.

Thus, for f ∈ L1(R2)∩Hα(R2) with α > 0, the approximate
FBP reconstruction fL belongs to Hσ(R2) for all 0 ≤ σ ≤ α.

Let us now turn to the analysis of the FBP reconstruction
error eL = f − fL with respect to the Hσ-norm. For γ ≥ 0,
we define

rγ(x, y) =
(
1 + x2 + y2

)γ
for (x, y) ∈ R2

so that the Hσ-norm of eL can be expressed as

‖eL‖2σ =
1

4π2

∫
R2

rσ(x, y) |(Ff −WL · Ff)(x, y)|2 d(x, y)

= I1 + I2,

where

I1 =
1

4π2

∫
BL

rσ(x, y) |1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

with
BL =

{
(x, y) ∈ R2 | r(x, y) ≤ L

}
and

I2 =
1

4π2

∫
R2\BL

rσ(x, y) |Ff(x, y)|2 d(x, y).

For γ ≥ 0, we define

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
γ for L > 0

so that we can bound I1 from above by

I1 ≤
(

sup
(x,y)∈BL

(1−WL(x, y))2

rα−σ(x, y)

)
‖f‖2α = Φα−σ,W (L)‖f‖2α.

On the other hand, for 0 ≤ σ ≤ α, we can bound I2 by

I2 ≤ L2(σ−α) 1

4π2

∫
R2\BL

rα(x, y) |Ff(x, y)|2 d(x, y)

≤ L2(σ−α) ‖f‖2α.

Combining the estimates for I1 and I2, we finally obtain

‖eL‖2σ ≤
(

Φα−σ,W (L) + L2(σ−α)
)
‖f‖2α.

We can summarize the discussion of this section as follows.



Theorem 1 (Hσ-error estimate, see [1, Theorem 5.2]): Let
f ∈ L1(R2) ∩ Hα(R2) for some α > 0 and let W ∈ L∞(R)
be even and compactly supported with supp(W ) ⊆ [−1, 1].
Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(

Φ
1/2
α−σ,W (L) + Lσ−α

)
‖f‖α, (4)

where

Φα−σ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α−σ for L > 0.

For the purpose of analysing the convergence behaviour of
the error as the bandwidth goes to infinity, in [2], [4] we con-
sidered the special case of k-times continuously differentiable
window functions whose first k−1 derivatives vanish at zero.

Theorem 2 (Estimate for C k-windows, see [4, Theorem 3]):
Let the assumptions of Theorem 1 be satisfied. In addition, let
W ∈ C k([−1, 1]) for k ≥ 2 with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
( 1

k!
‖W (k)‖L∞([0,1]) + 1

)
Lσ−α ‖f‖α

for α− σ ≤ k, and by

‖eL‖σ ≤
(cα−σ,k

k!
‖W (k)‖L∞([0,1]) L

−k + Lσ−α
)
‖f‖α

for α−σ > k and sufficiently large L > 0, where the constant

cγ,k =
( k

γ − k

)k/2(γ − k
γ

)γ/2
is strictly monotonically decreasing in γ > k. In particular,

‖eL‖σ = O
(
L−min{k,α−σ}

)
for L→∞.

Note that for α − σ ≤ k the decay rate of ‖eL‖σ is
determined by the difference between the smoothness α of the
target function f and the order σ of the considered Sobolev
norm, whereas for α − σ > k the decay rate is predicted
to saturate at integer order O(L−k). Here, k denotes the
differentiability order of the window function W , whose first
k − 1 derivatives are required to vanish at zero.

IV. CONVERGENCE RATES FOR HÖLDER-WINDOWS

In this section, we generalize our results in Theorem 2 for
C k-windows by considering Hölder-windows. More precisely,
we again consider even window functions W ∈ L∞(R) with
supp(W ) ⊆ [−1, 1]. Unlike in our previous work, we now
assume that, for k ∈ N and ν ∈ (0, 1], the window W satisfies
W ∈ C k−1,ν([−1, 1]) with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

Thus, W is (k−1)-times continuously differentiable on [−1, 1]
and W (k−1) is Hölder continuous on [−1, 1] with Hölder
exponent ν ∈ (0, 1] and Hölder constant CW > 0 such that

|W (k−1)(S)−W (k−1)(t)| ≤ CW |S − t|ν ∀S, t ∈ [0, 1].

Under these assumptions, we will prove that the Hσ-norm
of the FBP reconstruction error eL = f−fL now behaves like

‖eL‖σ = O
(
L−min{k−1+ν,α−σ}

)
for L→∞.

Theorem 3 (Estimate for Hölder-windows): Let the assump-
tions of Theorem 1 be satisfied. In addition, for k ∈ N and
0 < ν ≤ 1 let W ∈ C k−1,ν([−1, 1]) with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(

Γ(ν + 1)

Γ(ν + k)
CW + 1

)
Lσ−α ‖f‖α

for α− σ ≤ k − 1 + ν, and by

‖eL‖σ ≤
(
cα−σ,k,ν

Γ(ν + 1)

Γ(ν + k)
CW L−k+1−ν + Lσ−α

)
‖f‖α

for α−σ > k− 1 + ν and sufficiently large L > 0, where the
constant

cγ,k,ν =
( k − 1 + ν

γ − k + 1− ν

)(k−1+ν)/2(γ − k + 1− ν
γ

)γ/2
is strictly monotonically decreasing in γ > k − 1 + ν. In
particular,

‖eL‖σ = O
(
L−min{k−1+ν,α−σ}

)
for L→∞.

Proof: Based on our assumptions and on the Hσ-error
estimate (4) from Theorem 1, i.e.,

‖eL‖σ ≤
(

Φ
1/2
α−σ,W (L) + Lσ−α

)
‖f‖α,

it is sufficient to analyse the error term

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
γ = max

S∈[0,1]

(1−W (S))2

(1 + L2S2)
γ

for γ ≥ 0. By assumption we have W ∈ C k−1,ν([−1, 1]) and

|W (k−1)(S)−W (k−1)(t)| ≤ CW |S − t|ν ∀S, t ∈ [0, 1].

Thus, if k = 1, the assumption W (0) = 1 gives

|1−W (S)| ≤ CW Sν ∀S ∈ [0, 1].

If k ≥ 2, the fundamental theorem of calculus gives

W (j)(S) = W (j)(0) +

∫ S

0

W (j+1)(t) dt ∀ 0 ≤ j ≤ k − 2.

In particular,

W (S) = 1 +

∫ S

0

W ′(t) dt ∀S ∈ [0, 1]

and, for k > 2, iteratively applying integration by parts yields

W (S) = 1 +
1

(k − 2)!

∫ S

0

(S − t)k−2W (k−1)(t) dt,

since

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 2.



Using W (k−1) ∈ C 0,ν([−1, 1]) and W (k−1)(0) = 0, we have

|W (k−1)(t)| ≤ CW tν ∀ t ∈ [0, 1]

and, consequently, for all S ∈ [0, 1], it follows that

|1−W (S)| ≤ 1

(k − 2)!
CW

∫ S

0

(S − t)k−2 tν dt,

where∫ S

0

(S − t)k−2 tν dt = (k − 2)!
Γ(ν + 1)

Γ(ν + k)
Sν+k−1.

Hence, for any k ∈ N we have

|1−W (S)| ≤ Γ(ν + 1)

Γ(ν + k)
CW Sk−1+ν ∀S ∈ [0, 1]

and the error term Φγ,W (L) is bounded above by

Φγ,W (L) ≤ Γ(ν + 1)2

Γ(ν + k)2
C2
W max

S∈[0,1]

S2(k−1+ν)

(1 + L2S2)
γ .

It remains to analyse the function

φ(S) =
S2(k−1+ν)

(1 + L2S2)
γ for S ∈ [0, 1].

Case 1: For 0 ≤ γ ≤ k − 1 + ν, the function φ is strictly
monotonically increasing in (0, 1] so that

max
S∈[0,1]

φ(S) = φ(1) ≤ L−2γ .

Case 2: For γ > k− 1 + ν, the first order necessary condition
for a maximum of φ yields

φ′(S) = 0
S 6=0⇐⇒ (γ − k + 1− ν)L2 S2 = k − 1 + ν,

which has the unique positive solution

S∗ =

√
k − 1 + ν

L
√
γ − k + 1− ν

,

where

S∗ ∈ (0, 1] ⇐⇒ L ≥
√
k − 1 + ν√

γ − k + 1− ν
= L∗.

Furthermore, φ is strictly monotonically increasing in (0, S∗)
and strictly monotonically decreasing in (S∗,∞) so that

arg max
S∈[0,1]

φ(S) =

{
1 for L < L∗

S∗ for L ≥ L∗.

With
φ(S∗) = c2γ,k,ν L

−2(k−1+ν)

we finally get

max
S∈[0,1]

φ(S) ≤

{
L−2γ for L < L∗

c2γ,k,ν L
−2(k−1+ν) for L ≥ L∗,

where the constant

cγ,k,ν =
( k − 1 + ν

γ − k + 1− ν

)(k−1+ν)/2(γ − k + 1− ν
γ

)γ/2
is strictly monotonically decreasing in γ > k − 1 + ν.

Note that in Theorem 3 the convergence rate of ‖eL‖σ is
determined by the difference between the smoothness α of the
target function f and the order σ of the considered Sobolev
norm, as long as α−σ ≤ k−1+ν. For α−σ > k−1+ν the
order of convergence is predicted to saturate at fractional rate
O(L−(k−1+ν)). However, in this case the involved constant
cα−σ,k,ν decreases at increasing α and, thus, a smoother target
function still allows for a better approximation, as expected.

We remark that the results of Theorem 3 continue to hold
if we assume W ∈ C k−1([−1, 1]) and if W (k−1) satisfies a
Hölder condition of order 0 < ν ≤ 1 only at zero in the sense
that there exists a constant CW > 0 such that

|W (k−1)(0)−W (k−1)(S)| ≤ CW Sν ∀S ∈ [0, 1].

Let us finally consider the special case of Lipschitz-windows
W ∈ C k−1,1([−1, 1]) with k ∈ N. In this case, W (k) exists
almost everywhere and we have CW = ‖W (k)‖L∞([0,1]).
Consequently, our error estimates in Theorem 3 reduce to

‖eL‖σ ≤
( 1

k!
‖W (k)‖L∞([0,1]) + 1

)
Lσ−α ‖f‖α

for α− σ ≤ k and

‖eL‖σ ≤
(cα−σ,k

k!
‖W (k)‖L∞([0,1]) L

−k + Lσ−α
)
‖f‖α

for α−σ > k, showing that the estimates in Theorem 2 remain
valid under the weaker assumption W ∈ C k−1,1([−1, 1]).

V. CONCLUSION

We conclude that the flatness of the window W at zero
determines the convergence rate of the Hσ-error bounds for
the inherent FBP reconstruction error. More precisely, if the
first k derivatives vanish at zero and |W (k)(S)| grows like
|S|ν with ν ∈ (0, 1], the decay rate of ‖f − fL‖σ is predicted
to saturate at fractional order O(L−(k+ν)) for α−σ > k+ ν.
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