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Abstract—We consider the problem of conjugate phase re-
trieval in Paley-Wiener space PWπ . The goal of conjugate phase
retrieval is to recover a signal f from the magnitudes of linear
measurements up to unknown phase factor and unknown conju-
gate, meaning fptq and fptq are not necessarily distinguishable
from the available data. We show that conjugate phase retrieval
can be accomplished in PWπ by sampling only on the real line
by using structured convolutions. We also show that conjugate
phase retrieval can be accomplished in PWπ by sampling both
f and f 1 only on the real line. Finally, we show that generically,
conjugate phase retrieval can be accomplished by sampling at 3
times the Nyquist rate, whereas phase retrieval requires sampling
at 4 times the Nyquist rate.

I. INTRODUCTION

The phase retrieval problem can be stated as follows: can
a signal f be reconstructed from the magnitudes of linear
measurements of f? Naturally, f and αf cannot be distin-
guished by the magnitudes of linear measurements, where
α is any scalar of magnitude 1. In general, one wishes to
design a sampling scheme so that the magnitudes of linear
measurements can distinguish all signals up to the ambiguity
of this uniform phase factor. We consider in the present paper
a weaker formulation of the problem: can a signal f be
reconstructed from the magnitudes of linear measurements,
up to the ambiguity of αf and αf? We refer to this as the
conjugate phase retrieval problem.

Let us make precise our problem formulation here. The
Paley-Wiener space PWβ consists of all f P L2pRq such that
f̂pξq “ 0 for a.e. ξ P Rzr´β, βs. Here, β is any positive
number. Any such f P PWβ has an extension to an entire
function on the complex plane. Moreover, if f P PWβ , then
the (entire) function f 7pzq :“ fpzq P PWβ as well. We define
an equivalence relation on PWβ as follows: for f, g P PWβ

f „ g if f “ αg, or f “ αg7 for some |α| “ 1. (1)

Our goal is to aq design a sequence of linear functionals
(measurements) φn : PWβ Ñ C such that the mapping

A : PWβ{ „Ñ `2pZq : f ÞÑ p|φnpfq|qn (2)

is one-to-one, and bq reconstruct rf s from p|φnpfq|qn, where
rf s denotes the equivalence class in PWβ{ „ of f P PWβ .

The phase retrieval problem originates in optics [1], [2], [3],
[4]. Modern phase retrieval is often considered in the case of
frames [5], [6], [7]. Conjugate phase retrieval for frames was
introduced in [8]. Phase retrieval in the context of wavelets and

other systems appear in [9], [10], [11], [12]. Phase retrieval in
the Paley-Wiener space in particular is discussed in [13], [14].
In [13] considers the case of real phase retrieval in PWπ ,
meaning only real-valued signals f are sampled. The main
result is that if one samples f at more than twice the Nyquist
frequency, then ˘f can be recovered from p|fptnq|qn. We
note here that the reconstruction of ˘f given [13] involves
reconstruction off of the real axis. Similarly, [14] considers
the case of (complex) phase retrieval in PWπ by designing a
sampling scheme that occurs off of the real axis. In particular,
the sampling scheme as presented in [14] takes the form

φnpfq “
ÿ

j

cj,nfpzn ´ bj,nq (3)

for complex scalars cj,n, zn, bj,n. Sampling schemes such as
this are referred to as structured modulations in [14] because
the authors there consider the reconstruction in the Fourier
domain, where the shifts become modulations.

We will design sampling schemes for the conjugate phase
retrieval problem in PWπ (our statements can be modified
appropriately for PWβ). In Subsection II-B, our sampling
scheme will take the form of structured convolutions. How-
ever, we will demonstrate that by solving the conjugate phase
retrieval problem (which is weaker the the phase retrieval
problem), we will be able to both sample and perform the
reconstruction on the real axis. In Subsection II-E, we will
show that the conjugate phase retrieval problem can be solved
by sampling both f and f 1 (on the real axis as well) rather
than with structured convolutions.

II. CONJUGATE PHASE RETRIEVAL

A. Preliminary Results

Our results are based on several elementary and known
results. The first concerns the square of a signal f P PWβ :

Lemma 1: If f P PWβ , then:
1. f 1 P PWβ ;
2. ff 7 P PW2β ;
3. f 1pf 1q7 P PW2β .
The following result is proven in [15]:
Proposition 1: Suppose f, g P PWβ .
1. If b ă β{π, and for all x P R, |fpxq| “ |gpxq| and
|fpx` bq ´ fpxq| “ |gpx` bq ´ gpxq|, then f „ g.

2. If for all x P R, |fpxq| “ |gpxq| and |f 1pxq| “ |g1pxq|,
then f „ g.



In Proposition 1, f „ g is the equivalence relation given in
Equation (1).

A sequence ttnun Ă R is a set of sampling for PWβ

provided that there exist constants 0 ă A,B such that

A}f}2 ď
ÿ

n

|fptnq|
2 ď B}f}2

holds for all f P PWβ .
Theorem 1: Suppose ttnu Ă R is a set of sampling for

PW2β . Then the mapping

A : PWβ{ „Ñ `2pZq ‘ `2pZq
: f ÞÑ p|fptnq|, |fptn ` bq ´ fptnq|qn

is one-to-one whenever b ă β
π .

Similarly, the mapping

rA : PWβ{ „Ñ `2pZq ‘ `2pZq
: f ÞÑ p|fptnq|, |f

1ptnq|qn

is one-to-one.
The proof follows from the fact that fptqf 7ptq and pfpt `

bq ´ fptqqpfpt ` bq ´ fptqq7 can be reconstructed from the
sequence of samples p|fptnq|2qn p|fptn ` bq ´ fptnq|

2qn,
respectively, which we note can be done in a stable way from
the hypotheses.

Theorem 2: The range RpAq is closed. The inverse A´1

is continuous from RpAq to PWβ{ „. The same results hold
for rA.

The proof of this is an adaptation of a similar result found
in [10]. The authors of [10] note that in their numerical
experiments, the reconstruction is not stable. It is proven
in [11] that A´1 is not Lipschitz continuous and thus the
reconstruction cannot be stable; the reason for the lack of
stability is because the space PWβ is infinite-dimensional,
and not because of a defect in any sampling scheme.

B. Conjugate Phase Retrieval Using Structured Convolutions

We will design a sampling scheme to solve the conjugate
phase retrieval problem in PWβ in a manner similar to the
scheme in Equation (3). To do so, we consider the conjugate
phase retrieval problem in finite dimensions.

Definition 1: The vectors t~v1, . . . , ~vnu Ă CK do conjugate
phase retrieval if for every ~x, ~y P CK ,

|x~x,~vjy| “ |x~y,~vjy| for j “ 1, . . . , n,

ñ ~x “ eiθ~y or ~x “ eiθ~y for some θ P R.

If we write the vectors ~vj as column vectors, we will say that
the matrix A “

“

~v1 . . . ~vn
‰

does conjugate phase retrieval
when the columns of A do conjugate phase retrieval.

For this we require a result from [8] concerning conjugate
phase retrieval in C2 and C3:

Proposition 2: If ~v1, ~v2, ~v3 P R2 is written as

“

~v1 ~v2 ~v3
‰

“

„

a1 b1 c1
a2 b2 c2



then ~v1, ~v2, ~v3 does conjugate phase retrieval in C2 if and only
if

det

»

–

a21 2a1a2 a22
b21 2b1b2 b22
c21 2c1c2 c22

fi

fl ‰ 0. (4)

Likewise, if ~v1, . . . , ~v6 P R3 is written as

“

~v1 ~v2 . . . ~v6
‰

“

»

–

a1 b1 c1 d1 e1 f1
a2 b2 c2 d2 e2 f2
a3 b3 c3 d3 e3 f3

fi

fl

then ~v1, . . . ~v6 does conjugate phase retrieval in C3 if and only
if

det

»

—

—

—

—

—

—

–

a21 a22 a23 2a1a2 2a1a3 2a2a3
b21 b22 b23 2b1b2 2b1b3 2b2b3
c21 c22 c23 2c1c2 2c1c3 2c2c3
d21 d22 d23 2d1d2 2d1d3 2d2d3
e21 e22 e23 2e1e2 2e1e3 2e2e3
f21 f22 f23 2f1f2 2f1f3 2f2f3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

‰ 0. (5)

Theorem 3: Let A “ pakmq be a KˆM matrix which does
conjugate phase retrieval on CK . Let tbjuK´1

j“0 Ă R be such
that the group Zptb0, b1, . . . , bK´1uq has finite upper Beurling
density and lower Beurling density greater than one. Suppose
ttnunPZ Ă R is a set of sampling for the space PW2π . Then
the following sampling scheme does conjugate phase retrieval
on PWπ:

t|αm ˚ fptnq| : m “ 0, 1, . . . ,M ´ 1; n P Zu

where

αm ˚ f “
K´1
ÿ

k“0

akmfp¨ ´ bkq. (6)

Proof: Suppose f, g P PWπ is such that

|αm˚fptnq| “ |αm˚gptnq|, for m “ 0, 1, . . . ,M´1; n P Z.
(7)

Since ttnu is a set of sampling for PW2π and |α ˚ f |2, |α ˚
g|2 P PW2π , we have that

|αm ˚ fpxq| “ |αm ˚ gpxq|, for all x P R.

Note that the value |αm ˚ fpxq| is the magnitude of the
inner product of the m-th column of A with the column
vector pfpx´ b0q . . . fpx´ bK´1q

T . Since the matrix A does
conjugate phase retrieval in CK , for all x P R we have that
either

¨

˚

˚

˚

˝

fpx´ b0q
fpx´ b1q

...
fpx´ bK´1q

˛

‹

‹

‹

‚

“ λ1pxq

¨

˚

˚

˚

˝

gpx´ b0q
gpx´ b1q

...
gpx´ bK´1q

˛

‹

‹

‹

‚

(8)

or
¨

˚

˚

˚

˝

fpx´ b0q
fpx´ b1q

...
fpx´ bK´1q

˛

‹

‹

‹

‚

“ λ2pxq

¨

˚

˚

˚

˝

gpx´ b0q

gpx´ b1q
...

gpx´ bK´1q

˛

‹

‹

‹

‚

(9)

for some λjpxq P C with |λjpxq| “ 1.



For every k “ 1, . . . ,K´1 and every x such that Equation
(8) holds, we have that

|fpx´ bkq ´ fpxq| “ |λ1pxqgpx´ bkq ´ λ1pxqgpxq|

“ |gpx´ bkq ´ gpxq|.

Similarly, for x such that Equation (9) holds, we have that

|fpx´ bkq ´ fpxq| “ |λ2pxqgpx´ bkq ´ λ2pxqgpxq|

“ |gpx´ bkq ´ gpxq|.

Therefore, we have |fpxq| “ |gpxq| and |fpx´ bkq´ fpxq| “
|gpx ´ bkq ´ gpxq| both hold for all k “ 1, . . . ,K ´ 1 and
all x P R. By the proof of Proposition 1, we obtain that there
exists a meromorphic function W such that either f “ Wg
or f “ Wg7. Moreover, W is periodic with period bk for
every k “ 1, . . . ,K ´ 1, so it is periodic by the group
Zptb0, b1, . . . , bK´1uq. Again by the proof of Proposition 1,
since the group has density at least 1, W must be constant.

Theorem 4: Let A “ pakmq be a K ˆ M matrix which
does phase retrieval on CK . Let tbjuK´1

j“0 Ă R be such
that the group Zptb0, b1, . . . , bK´1uq has finite upper Beurling
density and lower Beurling density greater than one. Suppose
ttnunPZ Ă R is a set of sampling for the space PW2π . Then
the following sampling scheme does phase retrieval on PWπ:

t|αm ˚ fptnq| : m “ 0, 1, . . . ,M ´ 1; n P Zu

where αm ˚ f are as in Equation (6).
The proof is identical to the proof of Theorem 3. We

note, however, that the condition on the coefficient matrix
A for the structured convolutions in Theorem 4 is much
more restrictive than in Theorem 3. In fact, we shall see in
Subsection II-D an illustration of this distinction. We also note
that this generalizes the results in [14].

C. A reconstruction method:

The proof of Theorem 3 suggests a reconstruction method.
We wish to reconstruct f P PWπ from the samples

t|αm ˚ fptnq| : m “ 0, 1, . . . ,M ´ 1; n P Zu (10)

where ttnu and αm satisfy the hypotheses of Theorem 3.
However, we must structure the convolutions so that the
bj “ j{B, for some B ą 1, and K ě 3, though K “ 3
suffices.

We need the following elementary lemmas.
Lemma 2: The set of all β P R such that

fp
n

B
´ bj ´ βq “ 0,

for some j “ 0, . . . ,K ´ 1 and for some n P Z is countable.
Lemma 3: Suppose g is an entire function. For fixed

tb0, . . . , bK´1u Ă R, the set of x P R for which the vectors
¨

˚

˚

˚

˝

gpx´ b0q
gpx´ b1q

...
gpx´ bK´1q

˛

‹

‹

‹

‚

and

¨

˚

˚

˚

˝

gpx´ b0q

gpx´ b1q
...

gpx´ bK´1q

˛

‹

‹

‹

‚

are colinear is either all of R or at most countable.
Reconstruction Algorithm 1:
1. From the samples in Equation (10), reconstruct the

functions

|αm ˚ fpxq|
2, m “ 0, 1, . . . ,M ´ 1,

using the Shannon sampling theorem.
2. Choose β at random:; by Lemma 2, with probability 1,

fp
n

B
´ bj ´ βq ‰ 0 for all j “ 0, . . . ,K ´ 1, n P Z.

3. Calculate the following samples using Step 1:

|αm ˚ fp
n

B
´ βq|2, m “ 0, 1, . . . ,M ´ 1, n P Z.

4. Use the fact that the matrix A does conjugate phase
retrieval to calculate for each n P Z the vector

~Fn :“ λp
n

B
´ βq

¨

˚

˚

˚

˝

fp nB ´ b0 ´ βq
fp nB ´ b1 ´ βq

...
fp nB ´ bK´1 ´ βq

˛

‹

‹

‹

‚

(11)

up to the unknown phase λp nB ´ βq and unknown
conjugation.

5. For adjacent vectors ~Fn and ~Fn`1, choose the conjuga-
tions and phase factors so that the entries that appear in
both vectors agree. This can be done, since by Lemma
3, the choice of β makes these choices unique (with
probability 1).

6. We now obtain the samples

tλfp
n

B
´ βq : n P Zu or tλfp

n

B
´ βq : n P Zu

up to unknown unimodular scalar λ, depending on
whether our choice for conjugation was correct. Using
these samples, we reconstruct λfpx´ βq (if our choice
of conjugation was correct) or λf 7px´βq (if our choice
of conjugation was incorrect).

: By random we mean with respect to any continuous
probability distribution on R or r0, 1s. This holds because there
are at most countably many β that fail to have the required
property, and for any continuous probability distribution, a
countable set has probability 0.

D. An Example

We demonstrate here a sampling scheme using simple
structured convolutions and the corresponding reconstruction
as outlined in Reconstruction Algorithm 1 to do conjugate
phase retrieval in PWπ . For this sampling scheme we are
considering the coefficient matrix

A “

»

–

1 0 0 1 1 0
0 1 0 ´1 0 1
0 0 1 0 ´1 ´1

fi

fl

which does not do phase retrieval, but does conjugate phase
retrieval by Proposition 2. Note that M “ 3 and K “ 6. We
choose a 0 ă b ď 1{2, and choose bk “ kb for k “ 0, 1, 2.



For the 6 column vectors of A we sample |αm˚fpbnq|, n P Z.
However, the samples for columns 2 and 3 are repetitions of
column 1, and column 6 is a repetition of column 4, and so
we actually only need to sample the structured convolutions
for columns 1, 4, and 5:

t|fpbnq|u, t|fpbn`bq´fpbnq|u, and t|fpbn`bq´fpbn´bq|u.

In Step 5 of Reconstruction Algorithm 1, we reconstruct

~Fn “ λpbnq

¨

˝

fpbn` b´ βq
fpbn´ βq

fpbn´ b´ βq

˛

‚

up to unknown phase λpbnq and conjugate. Note that two suc-
cessive vectors have two sample points in common. The choice
of β ensures that those two sample points are nonzero, and
the two-dimensional vector is not colinear with its conjugate.
Therefore, the phase and the conjugate for vector ~Fn`1 can
be determined from the phase and conjugate for vector ~Fn.

We note here that our sampling scheme requires sampling
3 functions at more than twice the Nyquist rate, and thus our
oversampling factor is at least 6. We can reduce this down to
oversampling by a factor of 3 by incorporating our choice of
β into the sampling scheme:

1. Choose β at random.
2. Sample |αm ˚ fpn´ βq| for m “ 1, 4, 5 and n P Z.
3. For each n, use the samples in Step 2 to reconstruct the

vector

~Fn “ λpnq

¨

˝

fpn` 1´ βq
fpn´ βq

fpn´ 1´ βq

˛

‚

up to unknown phase λpnq and unknown conjugation.
4. Choose the phase and conjugation for ~Fn`1 from the

choice of phase and conjugation for ~Fn, since they have
2 entries that coincide.

We note that the choice in Step 4 is unique, since as before,
the choice of β yields that all of the entries of ~Fn are nonzero
and the vector of overlapping entries is not colinear with its
conjugate. However, this algorithm will only work on generic
signals f P PWπ , but not all signals. The set of signals for
which this algorithm fails is a meager set in PWπ by the Baire
Category Theorem.

It is known that in CK , a frame must have at least 4K ´ 4
vectors in order to do phase retrieval [5]. No such bound is
known for conjugate phase retrieval, but note that our sampling
scheme above suggests that it should be on the order of 3K.

E. Conjugate Phase Retrieval using Derivatives
In analogy to structured convolutions, conjugate phase re-

trieval is possible by sampling the derivative of the signal.
Lemma 4: Suppose f and g are entire functions with the

property that ff 7 “ gg7 and f 1f 17 “ g1g17. Then there exists
a unimodular scalar λ such that either f “ λg or f “ λg7.

Theorem 5: Suppose ttnu is a set of sampling for PW2π .
Then the mapping

rA : PWπ{ „Ñ `2pZq ‘ `2pZq
: f ÞÑ p|fptnq|, |f

1ptnq|qn

is one-to-one.
We write

fptq “ rptqeiθptq t P R, rptq ě 0, θptq P R. (12)

The functions r, θ are differentiable a.e. Theorem 5 and
Lemma 4 provide a theoretical (but not a feasible numerical)
reconstruction algorithm as follows.

Reconstruction Algorithm 2: Given the phaseless samples
t|fptnq|, |f

1ptnq|u, proceed as follows:
1. reconstruct ff 7 and f 1f 17 in PW2π;
2. reconstruct r “

a

ff 7;
3. reconstruct

pθ1q2 “
f 1f 17

ff 7
´
rpff 7q1s2

4pff 7q2

on some interval I;
4. choose a square-root of pθ1q2 and integrate;
5. use f “ reiθ on I to expand f as a power series.
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