
Unfavorable structural properties of the set of
neural networks with fixed architecture

Philipp Petersen
Mathematical Institute
University of Oxford

Woodstock Road, Oxford
OX2 6GG, UK

E-Mail: Philipp.Petersen@maths.ox.ac.uk

Mones Raslan
Institut für Mathematik

TU Berlin
Straße des 17. Juni 136
10623 Berlin, Germany

E-Mail: raslan@math.tu-berlin.de

Felix Voigtlaender
Wissenschaftliches Rechnen

KU Eichstätt–Ingolstadt
Ostenstraße 26

85072 Eichstätt, Germany
E-Mail: felix.voigtlaender@ku.de

Abstract—In this note, we present a variety of results
from the recent paper [1] in which the structural properties
of the set of functions that can be implemented by neural
networks with a fixed architecture have been studied. As
it turns out, this set has many unfavorable properties: It
is highly non-convex, except possibly for a few uncommon
activation functions. Additionally, the set is not closed with
respect to Lp-norms, 0 < p < ∞, for all frequently used
activation functions, and also not closed with respect to
the L∞-norm for all practically-used activation functions
except for the (parametric) ReLU. Finally, the function that
maps a family of parameters to the function computed
by the associated network is not inverse stable for every
practically used activation function. Overall, our findings
identify potential causes for issues in the optimization
of neural networks such as no guaranteed or very slow
convergence and the explosion of parameters.

I. INTRODUCTION

The term deep learning [2] describes a variety of
machine learning algorithms based on the employment of
neural networks which have first been introduced in [3].
Although these methods work extremely well for a huge
variety of applications (such as speech recognition or
image classification), a thorough understanding of their
success is still in its infancy.

One very active research area lies in the examina-
tion of the mathematical properties of neural networks,
among them the investigation of their approximation
properties. The first result in this direction is given by
the universal approximation theorem [4] which states
that every continuous function defined on a compact
set can be approximated arbitrarily well by a two layer
neural network if one does not impose any restriction
on its width. Subsequent works such as [5], [6], [7]
and the references therein study the expressiveness of
neural networks for more specific function classes with
a particular focus on the tradeoff network size vs. ap-

proximation accuracy. Moreover, papers such as [8],
[7] as well as the references therein examine under
which circumstances deep neural networks have a higher
expressivity than shallow ones. Although these papers
provide significant insight about the capabilities of neural
networks, two potential problems of such an approach in
view of practical applications can be identified:

On the one hand, all results finally reduce the underly-
ing approximation problem to a classical approximation
problem employing polynomial-, wavelet-, or spline ap-
proximation thereby assuming that the functions which
are to be approximated are contained in some classical
approximation space such as a Hölder space, a Sobolev
or a Besov space. In contrast, in many applications such
as classification tasks such an assumption is not realistic.

On the other hand, the vast majority of approximation
theoretical results is of an asymptotic type in the sense
that for many functions, as the approximation accuracy
converges to zero, the size of the approximating neural
network needs to explode. However, as is common in
many deep learning methods, one a priori fixes a neural
network architecture and only adapts the parameters of
the neural network during the training process. Hence,
in view of practical applications, a more thorough study
of neural networks having a prescribed size is more
appropriate.

Although there exist works focussing on different
issues related to the architecture of neural networks (such
as [9] and the references therein), to the best of our
knowledge the intrinsic structure of the set of functions
generated by neural networks with a fixed architecture
has first been studied in [1]. The goal of this manuscript
is to present a selection of particularly interesting results
as well as their consequences.

We first state the basic notions of neural networks in

Section II with a particular focus on the distinction be-
tween a neural network as a collection of weights and the
realization of a neural network as a function. In Section
III we recapitulate some statements about the shape of
the set of neural network realizations which imply that
this set is structured in a significantly different way than
most classical approximation spaces. This observation
implies that the reduction to classical approximation
problems is not sufficient in order to ultimately explain
the efficiency of neural networks. Afterwards, we study
the closedness of the set of realizations with respect to
Lp, 0 < p ≤ ∞ in Section IV, whereas in Section V
we concentrate on an analysis of the properties of the
map which takes a collection of weights as an input and
returns the corresponding realization. These results offer
possible explanations for some phenomena frequently
observed in practice when optimizing a neural network
such as very slow convergence, no convergence at all
and exploding network weights.

II. BASIC NOTIONS OF NEURAL NETWORKS

In order to state our results, we will distinguish
between a neural network as a set of weights and
the associated function, referred to as its realization.
To explain this distinction, we first give the following
definition of a neural network.

Definition 1. [7] Let L ∈ N be a number of layers
and d = N0 ∈ N be an input dimension. Moreover, let
NL := 1 be the output dimension. For N1, . . . , NL−1 ∈
N, we say that a family Φ = (W`)

L
`=1 of affine linear

maps W` : RN`−1 → RN` is a neural network. We call
S := (d,N1, . . . , NL) the architecture of Φ; furthermore
L = L(S) is the number of layers of S.

Now we turn our attention to the definition of the
realization of a neural network as a function.

Definition 2. [7] Let Φ = (W`)
L
`=1 be a neural network,

% : R → R be an activation function and Ω ⊂ Rd. The
Ω-realization of a neural network Φ = (W`)

L
`=1 is the

function

RΩ
% (Φ) : Ω→ R,

x 7→WL(%(WL−1(. . . %(W1(x))))) ,

where %(y) := (%(y1), ..., %(ym)) for y = (y1, ..., ym) ∈
Rm.

In the remainder of this manuscript we will always
assume Ω ⊂ Rd to be compact with nonempty interior
and without any isolated points. We denote by C(Ω)
the Banach space of all continuous functions defined on

Ω with values in R equipped with the supremum norm
‖ · ‖sup, which, on C(Ω), coincides with the L∞-norm.

In the upcoming sections, we study structural prop-
erties of sets of realizations of neural networks with a
fixed architecture and we denote by RNNΩ

% (S) the set
of Ω-realizations of neural networks with architecture S
and activation function %.

The definition of networks and realizations from above
is sufficiently precise so that we can state our results. For
proofs and precise calculations we refer to [1].

In principle, the activation function % can be chosen
arbitrarily. However, in the framework of deep learning, a
variety of activation functions have been identified which
turned out to work well in practice. We have listed some
of the most common activation functions which we refer
to throughout this note in Table I. We emphasize that all
activation functions listed below are globally Lipschitz
continuous functions, whereas many results in [1] remain
valid for locally Lipschitz continuous functions.

III. SHAPE OF THE SET OF REALIZATIONS

It is not hard to see that the set of all neural networks
with a fixed architecture can be turned into a finite-
dimensional vector space. The goal of this section is
to argue that the set of corresponding Ω-realizations be-
haves in a considerably different way for every activation
function listed in Table I. First of all, we are able to show
that under very mild assumptions imposed on %, which
are fulfilled by any of the activation functions given
in Table I, the set RNNΩ

% (S) contains infinitely many
linearly independent functions. Secondly, one observes
that for a given architecture S and an arbitrary activation
function %, the set RNNΩ

% (S) is star-shaped, that is,
there exists a center f ∈ RNNΩ

% (S), i.e. for all
g ∈ RNNΩ

% (S), also

{λf + (1− λ)g : λ ∈ [0, 1]} ⊂ RNNΩ
% (S) .

However, for locally Lipschitz continuous activation
functions % the set RNNΩ

% (S) has a finite number of
linearly independent centers. Combining all of the above
arguments, we obtain our first negative result about the
structure of RNNΩ

% (S).

Theorem 3. [1, Corollary 3.6.] Let S be an architecture
and % : R→ R be one of the activation functions given
in Table I. Then RNNΩ

% (S) is not convex.

Additionally, it has been demonstrated that for a
large class of activation functions (including the ReLU,
the tanh and the sigmoid activation function), the set
RNNΩ

% (S) turns out to be highly non-convex in the

2

TABLE I
COMMONLY-USED ACTIVATION FUNCTIONS

Name Given by

rectified linear unit (ReLU) max{0, x}

a-parametric ReLU max{ax, x} for some a ≥ 0, a 6= 1

exponential linear unit x · χx≥0(x) + (exp(x)− 1) · χx<0(x)

softsign x
1+|x|

a-inverse square root
linear unit

x · χx≥0(x) +
x√

1+ax2
· χx<0(x) for a > 0

a-inverse square root unit x√
1+ax2

for a > 0

sigmoid / logistic 1
1+exp(−x)

tanh exp(x)−exp(−x)
exp(x)+exp(−x)

arctan arctan(x)

softplus ln(1 + exp(x))

sense that for every r ∈ [0,∞), the set of functions
having uniform distance less than r to any function
in RNNΩ

% (S) is not convex. This nonconvexity is
undesirable, since in the classical statistical learning
setting [10], the hypothesis space is often assumed to be
convex, and because for non-convex hypothesis spaces,
as pointed out in [10, Chapter 7], the learning problem
is considerably harder. Moreover, in recent years also
neural network based approaches towards the numerical
solution of PDEs have gained attention (see for instance
[11], [12] and the references therein). In this context,
practitioners are primarily interested in the realization of
a neural network rather than the corresponding weights
and an optimization task is performed over a non-convex
set hampering a possible convergence analysis of the
underlying algorithm.

IV. (NON-)CLOSEDNESS OF THE SET OF
REALIZATIONS

In this section, for any fixed architecture S, we exam-
ine the closedness of the set RNNΩ

% (S) with respect
to the topologies on Lp(Ω), p ∈ (0,∞]. In fact, the
following second negative result about the structure of
RNNΩ

% (S) holds.

Theorem 4. [1, Subsection 4.1./Subsection 4.2.] Let S
be a neural network architecture and % : R → R.
Under very general assumptions imposed on % which
are satisfied by all activation functions listed in Table
I, the set RNNΩ

% (S) is not closed in Lp(Ω) for any
p ∈ (0,∞).

In addition, if % : R → R is one of the activation
functions given in Table I except for the ReLU or the

a-parametric ReLU, the set RNNΩ
% (S) is not closed in

C(Ω).

Concerning the (a-parametric) ReLU, we do not know
for general architectures S whether closedness of the set
RNNΩ

% (S) holds with respect to the topology on C(Ω).
However, we were able to show the following result for
the special case L(S) = 2.

Theorem 5. [1, Theorem 4.10.] Let S be a neural
network architecture with L(S) = 2, let a ≥ 0 and
let % : R→ R be given by the a-parametric ReLU. Then
the set RNNΩ

% (S) is closed in C(Ω).

We now describe two disadvantageous consequences
of the non-closedness of RNNΩ

% (S) which also might
serve as an argument to use the (a-parametric) ReLU as
the underlying activation function, since these problems,
at least for two-layered neural networks, do not occur,
if the underlying optimization is done over C(Ω) or
L∞(Ω). Firstly, one frequently aims at minimizing a
loss function over RNNΩ

% (S). In case the error between
a neural network realization and a target function f
is measured with respect to the Lp-norm, the non-
closedness of RNNΩ

% (S) implies that such a problem
does not have a solution for every f in the sense that
f does not have a best approximation in RNNΩ

% (S).
Secondly, we additionally show that for an arbitrary but
fixed C > 0 the set{

RΩ
% (Φ) : Φ = (W`)

L
`=1 has architecture S and

W` = A`(·) + b` with ‖A`‖+ ‖b`‖ ≤ C}

of realizations of neural networks with a fixed architec-
ture and all affine linear maps bounded in a suitable

3

norm, is closed in Lp(Ω) for all p ∈ (0,∞]. This
observation implies that if f lies in the Lp-closure
of RNNΩ

% (S), but not in RNNΩ
% (S) itself, for any

sequence of networks (Φn)n with architecture S and
‖f − RΩ

% (Φn)‖Lp → 0 as n → ∞, the weights of the
networks Φn cannot remain uniformly bounded. This
phenomenon might explain numerical instabilites and
exploding weights in practical optimization algorithms.

V. FAILURE OF INVERSE STABILITY OF THE
REALIZATION MAP

For our final negative result, we study the inverse sta-
bility of the realization mapping RΩ

% from Definition 2,
which maps a family of neural network parameters
to its realization. Even though this mapping turns out
to be continuous (i.e. it is forward stable) from the
finite dimensional parameter space to Lp(Ω) for any
p ∈ (0,∞], it is not inverse stable. To be more precise,
the following statement which is applicable to any of the
activations given in Table I is true.

Theorem 6. [1, Theorem 5.2.] Let % : R → R be
Lipschitz continuous, but not affine-linear. Moreover, let
S be a neural network architecture with L(S) ≥ 2 and
N1 ≥ 3. Then there is a sequence (Φn)n of neural
networks with architecture S and

(i)
∥∥RΩ

% (Φn)
∥∥

sup
→ 0, as n→∞,

(ii) for any sequence (Ψn)n of neural networks with
architecture S and RΩ

% (Φn) = RΩ
% (Ψn), the weights

of (Ψn)n cannot remain uniformly bounded.

Rephrasing the statement of Theorem 6, we observe
that it is not always possible for two realizations that
are very close in the uniform norm to find corresponding
neural networks whose weights have small distance.

The missing inverse stability implies yet another con-
sequence which might explain a common phenomenon
when optimizing the weights of a neural network. Con-
sidering a standard regression task in which the weights
of a neural network are updated using a (stochastic)
gradient descent, it might occur that at some point the
underlying loss function applied to the realization of
the neural networks returns a small error, although the
associated weights are far away from these of the target
function. This might lead to very slow convergence of the
underlying optimization algorithm or, in extreme cases,
to no convergence at all.

VI. FUTURE WORK

Despite the unfavorable structure of the set of func-
tions generated by neural networks with fixed archi-
tecture, it is not immediately clear whether the same

results remain valid if one considers special architectures
such as those of convolutional neural networks. How-
ever, based on an equivalence between convolutional
and fully-connected networks established in [13], we
expect that the situation will not change significantly.
Moreover, properties like closedness or inverse stability
are heavily dependent on the norm which induces the
underlying topology. We anticipate a higher chance to
obtain closed sets of neural networks and inverse stable
parametrizations, if we consider Sobolev-type norms,
which, in the context of deep learning, have already been
used in [14].

ACKNOWLEDGEMENTS

P.P. and M.R. were supported by the DFG Collab-
orative Research Center TRR 109 “Discretization in
Geometry and Dynamics”. P.P is supported by a DFG
Research Fellowship ”Shearlet-based energy functionals
for anisotropic phase-field methods”. M.R. is supported
by the Berlin Mathematical School.

REFERENCES

[1] P. Petersen, M. Raslan, and F. Voigtlaender, “Topological proper-
ties of the set of functions generated by neural networks of fixed
size,” arXiv preprint arXiv:1806.08459, 2018.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[3] W. McCulloch and W. Pitts, “A logical calculus of ideas im-
manent in nervous activity,” Bull. Math. Biophys., vol. 5, pp.
115–133, 1943.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Math. Control Signal, vol. 2, no. 4, pp. 303–314, 1989.

[5] D. Yarotsky, “Error bounds for approximations with deep ReLU
networks,” Neural Netw., vol. 94, pp. 103–114, 2017.

[6] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen, “Optimal
approximation with sparsely connected deep neural networks,”
SIAM J. Math. Data Sci., to appear, 2019.

[7] P. Petersen and F. Voigtlaender, “Optimal approximation of
piecewise smooth functions using deep ReLU neural networks,”
Neural Netw., vol. 108, pp. 296–330, 2018.

[8] I. Safran and O. Shamir, “Depth-width tradeoffs in approximating
natural functions with neural networks,” in ICML, vol. 70, 2017,
pp. 2979–2987.

[9] L. Venturi, A. Bandeira, and J. Bruna, “Neural networks with fi-
nite intrinsic dimension have no spurious valleys,” arXiv preprint
arXiv:1802.06384, 2018.

[10] F. Cucker and S. Smale, “On the mathematical foundations of
learning,” Bull. Am. Math. Soc., vol. 39, pp. 1–49, 2002.

[11] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural
networks for solving ordinary and partial differential equations,”
IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 987–1000, 1998.

[12] W. E, J. Han, and A. Jentzen, “Deep learning-based numerical
methods for high-dimensional parabolic partial differential equa-
tions and backward stochastic differential equations,” Commun.
Math. Stat., vol. 5, no. 4, pp. 349–380, 2017.

[13] P. Petersen and F. Voigtlaender, “Equivalence of approximation
by convolutional neural networks and fully-connected networks,”
arXiv preprint arXiv:1809.00973, 2018.

[14] W. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and
R. Pascanu, “Sobolev training for neural networks,” in NeurIPS,
2017.

4

