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Abstract—An extension is given of a recent result of Glazyrin,
showing that an orthonormal basis {ei}di=1 joined with the
vectors {ej}mj=1, where 1 ≤ m < d minimizes the p-frame
potential for p ∈ [1, 2 log 2m+1

2m
/ log m+1

m
] over all collections of

N = d+m vectors {x1, . . . , xN} in Sd−1.

I. INTRODUCTION

For a set of unit vectors X = {x1, . . . , xN} ⊂ Sd−1, an
interesting quantity associated with X is the p-frame energy∑
i 6=j
|〈xi, xj〉|p. This energy perhaps appeared earliest for even

p and vectors in S4 in Hilbert’s 1909 solution to Waring’s
problem [7]. For even p the energy has close ties to objects
called spherical t-designs, certain configurations which act as
nodes for integration over the sphere, appearing for instance
in a 1981 paper of Goethals and Seidel [6]. More recently,
the terms p-frame energy or potential are used sometimes
interchangeably to describe the `p norm of the off-diagonal
elements in the Gram matrix of a collection of unit vectors,
this term originating in a paper of Benedetto and Fickus [1].
In their 2003 paper they introduced this term for the p = 2
energy after observing that minimizers are precisely what are
known as finite unit norm tight frames (FUNTFs).

For even p, minimizers of this quantity for sufficiently
many points on the sphere are t-designs. Associated identities
holding more generally for weighted designs show also that
some minimizers have interpretations as minimal isometric
embeddings of finite dimensional `2 spaces into higher di-
mensional `p spaces [11]. In projective space, the analogous
minimizers for p even (and unit norm vectors in Cd) are
known to be projective t-designs and have optimal properties
for measuring quantum states [10].

Describing minimizers for the p-frame potential for p not
even appears to be a difficult problem, and in general not
much is known about the structure of minimizers outside a
few exceptional cases (some results can found in the papers
of Ehler and Okoudjou in this line [4] or in the recent pre-
print [2]). A large part of the literature surrounding these
energies focuses on their relationship with certain symmetric
minimal coherence systems of vectors known as equiangular
tight frames (ETFs), studies of which first appeared in the
discrete geometry community [8]. An elementary argument
shows that ETFs minimize the p-frame energy for p > 2,
when these systems exist [9]. It a well-known open problem
to determine when an ETF of N unit vectors exists generally
and much of the evidence for existence of ETFs outside of the

real case is due to the observation that they are minimizers of
a range of energies [3].

In this note it is demonstrated that the method developed by
Glazyrin in [5] for describing minimizers of p-frame energies
has further applications. Adopting the notation used there for
the Gram matrix A = X ′X of a system of unit vectors X ,
the p-frame energy may be given alternatively by Ep(A) =∑
i6=j
|Ai,j |p. The main observation here is the following result.

Theorem I.1. For p ∈ [1, 2 log 2m+1
2m / log m+1

m ], 1 ≤ m < d
and real (d + m) × (d + m) matrix A of rank d with ones
along the diagonal,

Ep(A) =
∑
i 6=j

|Ai,j |p ≥ 2m.

The proof for the above inequality is an extension of the
method used in [5], and by restriction to m = 1, one obtains
the result proved there. In the limit, it is known that the unique
symmetric Borel probability measure which minimizes the p-
frame energy on the sphere Sd−1 equally distributes mass over
the vertices of a cross-polytope whenever p ∈ (0, 2) [4]. These
energies do not depend on the sign of any vector and so one
can reflect any vector about the origin to obtain the same
energy. For this reason it makes the most sense to consider
the energy projectively, that is with vectors constrained to lie
in one hemisphere. With this in mind, the above shows that
for N = d+m vectors, 1 ≤ m < d, and p in a certain range
near p = 1, the support for the finite minimization problem
agrees with that of the limiting distribution.

It will be necessary to introduce a related optimization
problem to minimizing Ep found in the previously mentioned
reference [5] in order to state the relevant steps in the proof
of optimality of the orthonormal sequence for the above
mentioned range of p.

II. REPEATED ORTHO-SEQUENCE MINIMIZES Ep(A)

Define fc,p(t) =
(

t
c−t

) p
2

and set M(c, p,N) to be the
optimal value in the optimization problem

min

{
N∑
i=1

fc,p(ti) |
N∑
i=1

ti = 1, ti ∈ [0, c)

}
.

The following inequality for Ep and M(c, p,N) is proved in
[5, Lemma 2.2].



Proposition II.1. For any real N × N matrix A of rank d
with unit diagonal elements,

Ep(A) ≥M
(

1

N − d
, p,N

)
, for 1 ≤ p ≤ 2.

By the above proposition, in order to prove the theorem it
suffices to show M( 1

m , p,N) ≥ 2m. The following observa-
tion, used in the proof of the case m = 1 in [5], will be applied
below (which is obtained by use of concavity/convexity of f
and Jensen’s and Karamata’s inequality):

Lemma II.2. Set α = 1
2 −

p
4 . For p ∈ [1, 2], M( 1

m , p,N) is
minimized for tj of the form

(i) t1 = · · · = tk = 1
k , tk+1 = · · · = tn = 0, where 1

k ≥ α
or

(ii) t1 = · · · = tk = x, tk+1 = 1− kx,
tk+2 = · · · = tN = 0, where x ≥ α, 0 < 1− kx < α.

The proof of the main theorem is now given.

Proof. Set p0,m = 2 log 2m+1
2m / log m+1

m and qm =
p0,m
2 .

Consider the first case in the above lemma, t1 = · · · = tk =
1
k , tk+1 = · · · = tn = 0, where 1

k ≥ α. In this case, for
p < p0,m kf1,p(

1
k ) =

k

(k−1)
p
2

takes minimal value 2m.

In the second case, x < 1
k and x ≥ α ≥ 1

2 −
p0,m
4 so that k

can take (integer) values only in [m, 4m]. To show Ep ≥ 2m
for p ≤ p0,m, it suffices then to show for all m ≤ j ≤ 4m,
and all x in I = ( 1

j+1 ,
1
j ) that

gj(x) = j

(
mx

1−mx

)qm
+

(
m(1− jx)

1−m(1− jx)

)qm
satisfies gj(x) ≥ 2m. This will be demonstrated using prop-
erties specific to gj(x), namely that the function has at most
one critical point, g′j(x) = 0, inside the interval I . Taking
derivatives,

g′j(x) = qmjm

(
mx

1−mx

)qm−1 1

(1−mx)2

− qmjm
(

m(1− jx)
1−m(1− jx)

)qm−1 1

(1 +m(−1 + jx))2
,

so that g′j(x) = 0 gives(
x(1 +m(−1 + jx))

(1−mx)(1− jx)

)qm−1
=

(1−mx)2

(1 +m(−1 + jx))2(
x(1 +m(−1 + jx))

(1−mx)(1− jx)

)qm+1

=
x2

(1− jx)2

1 +m(−1 + jx)

1−mx
=

(
x

(1− jx)

) 2
qm+1−1

1−mx
1 +m(−1 + jx)

=

(
x

(1− jx)

)1− 2
qm+1

.

Calling the function on the left in the above expression f(x)
and the function on the right g(x),

f ′′(x) =
2j(1 + j −m)m2

(1 +m(−1 + jx))3
> 0 on I,

while letting α = 1− 2
qm+1 ,

g′′(x) =
α( x

1−jx )
α(−1 + α+ 2jx)

x2(jx− 1)2
< 0 on I,

since α < 0. Thus f(x) is convex on I , while g(x) is concave
on I . Since f( 1

j+1 ) = g( 1
j+1 ) and f ′( 1

j+1 ) ≤ g′( 1
j+1 ) when

j < 4m it must be the case then that f(x) = g(x) for exactly
one point x ∈ I , (x 6= 1

j+1 ,
1
j ). Note that when j = 4m there

are no critical points in I . Now,

g′j

(
1

j + 1

)
= 0 and lim

x→ 1
j

g′j (x) = −∞.

So the critical points then correspond to local maxima
of gj(x) and it suffices to check the value of gj(x) at the
endpoints in I for each m ≤ j ≤ 4m to establish the desired
lower bound. These values are

gj

(
1

j + 1

)
= (1 + j)

(
m

1 + j −m

)qm
,

gj

(
1

j

)
= j

(
m

j −m

)qm
.

Each value may be checked to be greater or equal to 2m by
minimizing with respect to j. Taking a derivative in j gives a
decreasing then increasing expression with a zero between 2m
and 2m+1. These closest values then minimize the expression
over all feasible positive integers j ≥ m and the minimal value
for all cases is 2m.

III. DISCUSSION

As was noted in [5], the above argument applies to the
problem of minimizing Ep(A) over N × N matrices over
F = R,C, or H, real and complex numbers or quaternions. For
N = d+1 the range of p for which the orthogonal construction
above is expected to be optimal for Ep is p ∈ [0, log 3

log 2 ]
and this question is part of a more general conjecture by
Chen, Gonzales, Goodman, Kang, and Okoudjou [2] about
minimizers of Ep(A) with p ∈ [0, 2] (and N = d + 1). As
was noted also in [5], the bound given by the main theorem
here does not extend fully to this conjectured range. How far
from sharp the above bound is for m > 1 appears to be an
interesting question.

We briefly look into this question now, building on some re-
cent observations from [2]. It was suggested from a numerical
study that for N = 5 points on the unit circle there may be a
transition around p = 1.78 for which the frame energy changes
from being minimized on {e1, e1, e2, e2, e2} to a configuration
of the form {x, x, y, y, z}. One example of a Gram matrix from
a system of vectors which can take this form, (but need not
generally) is the matrix

A =


1 1 0 α −α
1 1 0 α −α
0 0 1

√
1− α2

√
1− α2

α α
√
1− α2 1 β

−α −α
√
1− α2 β 1

 .



Since A is a rank-two matrix,

det

 1 α −α
α 1 β
−α β 1

 = 0,

so that β = −1 or β = 1− 2α2. The first value gives a larger
Ep value, so suppose instead that β = 1− 2α2. Then for this
A,

Ep(A) = 2 + 8αp + 2(1− 2α2)p + (1− α2)
p
2 and

dEp(A)

dα
= p(8αp−1 − 8α(1− 2α2)p−1 − 4α(1− α2)

p
2
−1).

Note now that the value of Ep on the repeated orthonormal
sequence {e1, e1, e2, e2, e2} is 4. It remains now to consider
solutions (α, p) to the system

8αp + 2(1− 2α2)p + (1− α2)
p
2 = 4,

p(8αp−1 − 8α(1− 2α2)p−1 − 4α(1− α2)
p
2−1) = 0.

Given that one may not expect such a system to have solu-
tions necessarily expressible via elementary functions, looking
numerically for a solution gives the values of α and p below

α = 0.43421690071432109168188584186122094,

p = 1.77766251887018589539510545748522601.

Replacing 4 on the right hand side of the first equation
above with 4 minus a small quantity and repeating the root
finding procedure provides a pairing (α, p) with a smaller
corresponding value of Ep than 4 (which can be checked to be
valid by truncating the numerical solution at a given precision,
noting that this α will still be feasible).

After experimenting numerically it appears one can ex-
tend these observations similarly to the case of N = 7,
where the transition value there appears to be about p =
1.840321171266. In both of the above cases, observations only
provide evidence that the threshold can occur no later than the
p value above. A more general picture is suggested by further
experiments.

Conjecture III.1. Let N = m+ kd points be given in Sd−1,
with 1 ≤ m < d, d ≥ 2, and gram matrix A ∈ RN×N .
Then there is a value of p0, independent of dimension d
and excess m, such that the repeated orthonormal sequence
{ej mod d}Nj=1 minimizes Ep over all size N systems of unit
vectors (with value Ep(A) = d(k2 − k) + 2k) for p < p0 and
the minimum value of Ep(A) satisfies Ep(A) < d(k2−k)+2k
when p > p0. Further p0 = p0(k) satisfies p0(k) → 2 as
k →∞.
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