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Abstract—Time encoding represents an alternative method of
sampling, based on mapping the amplitude information of a
signal into a time sequence. In this paper, we investigate the
problem of time encoding based on an integrate-and-fire model,
consisting of an integrator and a threshold comparator. We focus
on particular classes of non-bandlimited signals such as streams
and bursts of Diracs, and prove we can recover these perfectly
from their timing information.

Index Terms—Integrate-and-fire, time encoding, non-uniform
sampling, finite rate of innovation.

I. INTRODUCTION

There has recently been a growing interest in sampling
theory, which achieves the conversion of continuous signals
into discrete sequences [1]. From the classical Shannon sam-
pling theorem [2], to recent theories in compressed sensing
[3], [4] and finite rate of innovation [5]–[8], sampling theory
has provided precise answers on when a faithful conversion of
a continuous waveform into a discrete sequence is possible.
These methods are generally based on recording the amplitude
of the signal at specified time instants, which lead to uniform
sampling if evenly spaced, and non-uniform otherwise.

An alternative method to classical sampling is time en-
coding, which captures the amplitude information of a signal
into a sequence of non-uniform time instants. Time encoding
appears in nature, as a mechanism used by neurons to represent
sensory information as a sequence of action potentials, allow-
ing them to process information very efficiently [9]. Similarly,
acquisition models inspired by this mechanism, such as analog
to digital converters [10] or event-based vision sensors [11],
lead to simple and efficient processing of information. Within
the topic of time encoding, several authors have provided
ways to sample and reconstruct bandlimited signals [12]–[15],
typically connecting time-based sampling with the problem of
non-uniform sampling in shift-invariant spaces [16]–[18].

In this paper, we focus on particular classes of continuous-
time non-bandlimited signals such as streams or bursts of
Diracs, and prove that it is possible to perfectly recover
them from timing information. In Section II, we describe the
Time Encoding Machine (TEM) based on an integrate-and-
fire model. This acquisition model is based on first filtering
the input with a sampling kernel which can locally reproduce
exponentials, in the context of non-uniform sampling. Further-
more, in Section III we leverage the properties of the sampling
kernel into an algorithm for perfect recovery of an input Dirac,
and extend this method to streams and bursts of Diracs. Then,

in Section IV we derive conditions for perfect retrieval of these
signals. The results in Section V show that reconstruction of
these signals from timing information is exact to numerical
precision. Finally, conclusions are drawn in Section VI.

II. TIME-BASED SAMPLING USING AN
INTEGRATE-AND-FIRE MECHANISM

A. Acquisition Model
The operating principle of the time encoding strategy in-

vestigated in this paper is similar to the one in [12], and is
depicted in Fig. 1. The signal is first filtered with the kernel
ϕ(−t), before being passed to an integrator. When the output
of the integrator reaches the positive or negative trigger mark
±CT , the time encoding machine outputs a spike and the
integrated signal y(t) is reset to 0. The time instants when
the integrator reaches the threshold ±CT are recorded in the
sequence {tn}. Then, we can compute the output sample y(tn)
at each spike tn as:

y(tn) = ±CT =

∫ tn

tn−1

f(τ)dτ, (1)

where f(t) is defined as:

f(t) =

∫
x(τ)ϕ(τ − t)dτ, for t ∈ [tn−1, tn]. (2)

Hence, time encoding with an integrate-and-fire model is
equivalent to a non-uniform sampling problem, where we aim
to estimate the input x(t) from non-uniform samples y(tn).

Fig. 1: Time Encoding Machine based on Integrate-and-fire.
B. Sampling Kernels

The authors in [5] have shown that many signals with a
local rate of innovation can be perfectly retrieved from their
uniform samples, using kernels that are able to reproduce
polynomials or exponentials. This last family of kernels is also
of particular interest in the context of time-based sampling
using an integrate-and-fire mechanism.

An exponential reproducing kernel is a function ϕ(t) that,
together with its uniformly shifted versions, reproduces expo-
nentials of the form eαmt:∑

n∈Z

cm,nϕ(t− n) = eαmt, (3)

where αm ∈ C and for a proper choice of coefficients cm,n.
In order to satisfy Eq. (3), ϕ(t) has to verify the generalized

Strang-Fix conditions [19], [20], and the E-splines [21] are an
important family of functions that satisfy these conditions.



The second-order E-spline of support L is defined as:

ϕ(t) =


eα1−α0

α1−α0
e−α0t + e−α1+α0

α0−α1
e−α1t, −L ≤ t ≤ −L

2
,

1
α0−α1

e−α0t + 1
α1−α0

e−α1t, −L
2
≤ t ≤ 0,

0, otherwise.
(4)

In what follows, we show that the E-spline in Eq. (4) can
be used to locally reproduce exponentials, in the context of
non-uniform sampling. In other words, we prove that, within
a time interval [t1, t2] where there are no knots of the shifted
splines ϕ(t− tn), the following equation holds:

N−1∑
n=0

cm,nϕ(t− tn) = e−αmt, (5)

where N ≥ 2, m ∈ {0, 1}, and {tn} are non-uniform.
We notice that within each of its knot-free regions, the

second-order E-spline ϕ(t− tn) can be expressed as a linear
combination of the exponentials e−α0t and e−α1t:

ϕ(t−tn) =


a1,ne

−α0t + b1,ne
−α1t, tn − L ≤ t ≤ tn − L

2
,

a2,ne
−α0t + b2,ne

−α1t, tn − L
2
≤ t < tn,

0, otherwise,
(6)

where a1,n, b1,n, a2,n and b2,n are chosen to satisfy Eq. (4).
Then, let I1 be a knot-free interval with I1 ⊂ [tn+1 −

L, tn − L
2 ]. Moreover let v1(t) = ϕ(t − tn) for t ∈ I1

and v2(t) = ϕ(t − tn+1) for t ∈ I1. In the vector space
spanned by e−α0t and e−α1t, the elements v1(t) and v2(t)
are linearly independent, since tn+1 6= tn. Hence, using a
linear combination of v1 and v2, we can uniquely represent
any vector in this space, including e−α0t and e−α1t. Therefore,
in the interval I1 where there are no knots, we can find unique
cm,n and cm,n+1 such that Eq. (5) holds for m ∈ {0, 1}.

Similarly, reproduction of exponentials is possible on any
time interval spanned by knot-free regions of at least two
shifted E-splines. For different continuous intervals, the so-
lution to Eq. (5) differs, as highlighted in Fig. 2, where
reconstruction of exponentials in the continuous regions I1
and I2 is possible, but with different coefficients.

Fig. 2: Reproduction of ej
2π
5
t in two different intervals, I1 =

[0.625, 1]s and I2 = [1, 1.625]s, overlapped by continuous regions
of two non-uniformly shifted second-order E-splines.

III. PERFECT RECOVERY OF NON-BANDLIMITED SIGNALS
FROM TIMING INFORMATION

In this section, we provide algorithms for perfect recovery
from timing information, of the following classes of non-
bandlimited signals: single Dirac, stream of Diracs, and bursts
of Diracs. For all the signals studied, we assume sampling
using the TEM in Fig. 1, where the filter is the second-
order E-spline ϕ(t) defined in Eq. (4), of support L, which
can reproduce two different complex exponentials e−α0t and

e−α1t, with α0 = jω0, α1 = jω1 and ω1 = −ω0. The choice
of frequencies α0 and α1 ensures that ϕ(t) is real-valued.

A. Estimation of a Single Dirac
Let us consider a single input Dirac given by:

x(t) = x1δ(t− τ1). (7)
Suppose that in the interval [τ1, τ1 + L

2 ], the TEM outputs
3 spikes, at t0, t1 and t2. Then, using the property in Eq. (1),
we compute the following non-uniform output samples:

y(t0) =
x1(e

α0(t0−τ1) − 1)

α0(α0 − α1)
+
x1(e

α1(t0−τ1) − 1)

α1(α1 − α0)
,

y(t1) =
x1(e

α0t1 − eα0t0)

α0(α0 − α1)
e−α0τ1+

x1(e
α1t1 − eα1t0)

α1(α1 − α0)
e−α1τ1 , (8)

y(t2) =
x1(e

α0t2 − eα0t1)

α0(α0 − α1)
e−α0τ1+

x1(e
α1t2 − eα1t1)

α1(α1 − α0)
e−α1τ1 . (9)

The samples y(t1) and y(t2) are equivalent to those obtained
by filtering the input signal x(t) with a new kernel ϕ̃(t):

y(t1) = 〈x(t), ϕ̃(t− t1)〉,
where the shifted kernel can be expressed as a linear combi-
nation of the exponentials e−α0t and e−α1t:

ϕ̃(t− t1) =
eα0t1 − eα0t0

α0(α0 − α1)
e−α0t +

eα1t1 − eα1t0

α1(α1 − α0)
e−α1t

= a1e
−α0t + b1e

−α1t.
Similarly, we compute the sample y(t2) as:

y(t2) = 〈x(t), ϕ̃(t− t2)〉 = 〈x(t), a2e−α0t + b2e
−α1t〉.

Then, using the proof in Section II-B, we can find the unique
coefficients cm,1 and cm,2 such that:

cm,1ϕ̃(t− t1) + cm,2ϕ̃(t− t2) = e−αmt, for m ∈ {0, 1}. (10)

Furthermore, we can define the signal moments as:

sm =

2∑
n=1

cm,ny(tn)
(a)
= x1

2∑
n=1

cm,nϕ̃(τ1 − tn)
(b)
= x1e

−αmτ1 , (11)

where (a) follows from Eq. (7), and (b) from Eq. (10).
Finally, using Prony’s method [22], we can uniquely es-

timate the input parameters x1 and τ1, from the two signal
moments sm given by Eq. (11), for m ∈ {0, 1} and α1 = −α0.

B. Estimation of a Stream of Diracs
Let us now consider an input stream of Diracs:

x(t) =
∑
k

xkδ(t− τk).

Assuming that the Diracs are sufficiently separated, such
that τk − τk−1 > L, ∀k, we propose the following sequential
retrieval algorithm. Let us suppose that the first Dirac δ1 =
x1δ(t− τ1) is correctly estimated using the method in Section
III-A. Moreover, let us denote the output spike locations in the
interval [τ1, τ1 + L] with t0, t1, ..., tn−1, and the times after
τ1 +L with tn, tn+1, ..., which means that the location of the
second Dirac must satisfy τ2 ∈ [τ1 + L, tn].

Using the model of Fig. 1, we compute the first 3 non-
uniform output samples after τ1 + L as:

y(tn) =

∫ τ1+L

tn−1

x1ϕ(τ1 − τ)dτ +

∫ tn

τ2

x2ϕ(τ2 − τ)dτ,

y(tn+1) = yn+1 =

∫ tn+1

tn

x2ϕ(τ2 − τ)dτ,



y(tn+2) = yn+2 =

∫ tn+2

tn+1

x2ϕ(τ2 − τ)dτ.

The sample y(tn) contains information of both δ1 and δ2,
and hence cannot be used for estimation of the latter Dirac.
On the other hand, Section IV describes sufficient conditions
that guarantee that the output samples yn+1 and yn+2 occur in
the time interval [τ2, τ2 + L

2 ]. Then, since these samples have
contribution from δ2 only, we can use the proof in Section
III-A to compute the signal moments as:

sm = cm,1yn+1 + cm,2yn+2 = x2e
−αmτ2 .

Once δ2 is estimated from the signal moments using Prony’s
method, we use the subsequent non-uniform output samples,
after τ2 + L, in order to sequentially retrieve the next Diracs.
C. Estimation of a Dirac Burst with a Multichannel Approach

We now address the problem of estimation of a single input
burst of K Diracs, given by:

x(t) =

K∑
k=1

xkδ(t− τk),

where τ1 < τ2 < ... < τK , and all xk have the same sign.
Then, the first output samples can be computed as:

y(t0) =

∫ t0

τ1

〈x(t), ϕ(t)〉dt

and

y(ti) = yi =

∫ ti

ti−1

〈x(t), ϕ(t)〉dt, for i ≥ 1.

Assuming τK − τ1 < L
2 , Section IV describes conditions

that guarantee t1, t2, t3 ∈ [τK , τ1+
L
2 ]. This means that whilst

y0 and y1 may capture information of only some of the K
Diracs, y2 and y3 will contain information from all the input
Diracs. Then, using the definition of ϕ(τk − t) from Eq. (4)
for [τk, τk + L

2 ], we get:

y2 =

K∑
k=1

xk(e
α0t2 − eα0t1)

α0(α0 − α1)
e−α0τk +

xk(e
α1t2 − eα1t1)

α1(α1 − α0)
e−α1τk ,

y3 =

K∑
k=1

xk(e
α0t3 − eα0t2)

α0(α0 − α1)
e−α0τk +

xk(e
α1t3 − eα1t2)

α1(α1 − α0)
e−α1τk .

For K = 1, these samples are identical to the ones in Eq.
(8) and (9). Hence, using the proof in Section III-A, we can
find the unique coefficients cm,1 and cm,2 which give:

sm = cm,1y2 + cm,2y3 =

K∑
k=1

xke
−αmτk , for m ∈ {0, 1}. (12)

Since the input is a burst of K Diracs, there are 2K
free parameters we need to retrieve, and Prony’s method
requires at least 2K signal moments in order to ensure correct
estimation. Given that with one channel we obtain 2 signal
moments as in Eq. (12), we need K channels to compute
2K different moments. Finally, the filter ϕ(t) of the mth

channel is a second-order E-spline which can reproduce the
exponentials ejωm0

t and ejωm1
t, where ωm0

= ω0 + λm,
ωm1

= ω0 + λ(2K − 1 −m) and λ = −2ω0

2K−1 (which ensures
ωm1 = −ωm0 such that ϕ(t) is a real-valued function).

D. Estimation of Bursts of Diracs
We now consider the case of input bursts of K Diracs:

x(t) =
∑
b

K∑
k=1

xb,kδ(t− τb,k), (13)

where τb,k is the location of Dirac δk in burst b, and all
amplitudes xb,k in a burst b have the same sign.

We assume that the Diracs in consecutive bursts are suffi-
ciently separated, such that τb,1−τb−1,K > L, ∀b, and propose
the following sequential reconstruction algorithm.

Suppose the first burst of Diracs is correctly estimated
using the multichannel method presented in Section III-C,
and that the retrieved locations are τ1,1, τ1,2..., τ1,K . More-
over, denoting the output spikes after τ1,K + L with
tn, tn+1, tn+2, ..., we can impose sufficient conditions that
guarantee tn+1, tn+2, tn+3 ∈ [τ2,K , τ2,1 + L

2 ], as detailed in
Section IV. Therefore, using the proof in Section III-C, we can
use the output samples y(tn+2) and y(tn+3) as in Eq. (12),
to retrieve the subsequent input burst.

IV. SUFFICIENT CONDITIONS FOR PERFECT
RECONSTRUCTION

In this section, we prove sufficient conditions for loss-free
recovery of a sequence of bursts of Diracs, and an input stream
of Diracs. We impose conditions on the trigger mark of the
comparator in Fig. 1, which ensure the output spike train
captures sufficient information of the input signal, as well as on
the minimum separation between consecutive bursts of Diracs,
to ensure the input parameters are correctly retrieved using the
sequential algorithms presented in Section III.

Proposition 1. The timing information t1,i, t2,i, ..., tM,i for
i = 0, 1, ...,K − 1 provided by K devices as in Fig. 1 is a
sufficient representation of bursts of K Diracs as in Eq. (13)
when the sampling kernel of the mth time encoding machine is
a second-order E-spline of support L, which can reproduce the
exponentials ejωm0

t and ejωm1
t with ωm0

= ω0+λm, ωm1
=

ω0 +λ(2K − 1−m), λ = −2ω0

2K−1 and 0 < ω0 ≤ π
L . Moreover,

the spacing between bursts should be larger than L, and the
separation between the last and first Diracs within any burst
b must satisfy τb,K − τb,1 < L

2 . In addition, the comparator’s
trigger mark CT must satisfy the following conditions for each
device m and burst b:

CT >
(K − 1)Amax

ω2
m0

[1− cos(ωm0(τb,K − τb,1))], (14)

CT <
KAmin
5ω2

m0

[1− cos(ωm0(
L

2
− (τb,K − τb,1)))], (15)

where Amax and Amin are the absolute maximum and mini-
mum amplitudes of the input Diracs, and τb,1 and τb,K are the
locations of the first and last Diracs in burst b, respectively.

Proof. Suppose we want to estimate a burst of K Diracs with
locations τ1, τ2, ..., τK , and let us assume for simplicity that
their amplitudes satisfy x1, x2, ..., xK > 0. We denote with
tn, tn+1, ..., tM the output spikes caused by this burst in a
certain channel, such that tn > τ1 > tn−1. Then, for the
derivations in Section III-D to hold, we need to ensure that
tn+1, tn+2, tn+3 ∈ [τK , τ1 +

L
2 ]. The condition tn+1 > τK is

equivalent to: ∫ tn+1

τ1

f(τ)dτ >

∫ τK

τ1

f(τ)dτ. (16)

The left-hand side of this inequality can be expressed as:∫ tn+1

τ1

f(τ)dτ =

∫ tn+1

tn−1

f(τ)dτ −
∫ τ1

tn−1

f(τ)dτ
(a)
> CT , (17)

where (a) holds given Eq. (1) and tn > τ1 > tn−1.



The right-hand side of Eq. (16) can be re-written as:∫ τK

τ1

f(τ)dτ
(a)
<

K−1∑
k=1

Amax

∫ τK

τk

ϕ(τk − τ)dτ

(b)
<

(K − 1)Amax
ω2
m0

[1− cos(ωm0(τK − τ1))]
(c)
< CT

(d)
<

∫ tn+1

τ1

f(τ)dτ,

which shows that indeed tn+1 > τK .
In the derivations above, (a) follows from Eq. (2), and the

assumption x1, ..., xK > 0, (c) follows from Eq. (14) and (d)
from Eq. (17). Finally, condition (b) follows from:∫ τK

τk

ϕ(τk − τ)dτ
(a)
=

1

ω2
m0

[1− cos(ωm0(τK − τk))]

(b)
<

1

ω2
m0

[1− cos(ωm0(τK − τ1))].

where (a) follows from the definition of ϕ(τk − τ) in Eq. (4)
for τ ∈ [τk, τK ] with τK < τk +

L
2 , and from the hypothesis

that ϕ(τ) reproduces the exponentials e±jωm0
τ . Moreover, (b)

follows from the hypothesis that 0 < ωm0
≤ π

L which is
equivalent to 0 <

ωm0
L

2 ≤ π
2 , and from τK − τk < L

2 ,
which means that 0 < ωm0(τK − τk) < π

2 , and hence
1−cos(ωm0(τK−τ1)) > 1−cos(ωm0(τK−τk)) ∀k = 2, ...,K.

Similarly, since f(τ) > 0 for x1, ..., xK > 0, the condition
τ1 +

L
2 > tn+3 is equivalent to:∫ τ1+

L
2

τ1

f(τ)dτ >

∫ tn+3

τ1

f(τ)dτ, (18)

where the left-hand side can be expressed as:∫ τ1+
L
2

τ1

f(τ)dτ
(a)
=

K∑
k=1

∫ τ1+
L
2

τ1

xkϕ(τk − τ)dτ

(b)
=

1

ω2
m0

K∑
k=1

xk[1− cos(ωm0(
L

2
− (τk − τ1)))]

(c)
>

1

ω2
m0

K∑
k=1

xk[1− cos(ωm0(
L

2
− (τK − τ1)))]

(d)
>
KAmin
ω2
m0

[1− cos(ωm0(
L

2
− (τK − τ1)))]

(e)
> 5CT ,

(19)

where (a) follows from Eq. (2), (b) follows from the definition
of ϕ(τk − τ) in Eq. (4) for τ ∈ [τk, τ1 +

L
2 ], and (c) follows

from the hypothesis that 0 < ωm0
≤ π

L which is equivalent
to 0 <

ωm0
L

2 ≤ π
2 , and since τk − τ1 < L

2 ∀k = 2, ...,K.
Moreover, (d) holds since we assume x1, ..., xK > 0, and (e)
follows from Eq. (15).

Finally, the right-hand side of Eq. (18) is equivalent to:∫ tn+3

τ1

f(τ)dτ =

∫ tn+3

tn−1

f(τ)dτ −
∫ τ1

tn−1

f(τ)dτ

(a)
= 4CT −

∫ τ1

tn−1

f(τ)dτ
(b)
< 5CT

(c)
<

∫ τ1+
L
2

τ1

f(τ)dτ,

where (a) follows from Eq. (1), (b) holds since tn > τ1 >
tn−1 and (c) follows from Eq. (19).

In addition, we need to impose constraints on the separation
τK−τ1, such that the system of Eq. (14) and (15) is consistent.

Finally, the corresponding conditions for a stream of Diracs
are: 0 < CT < Amin

4ω2
0

. These are obtained by setting K = 1

in Eq. (14) and Eq. (15), and relaxing the latter condition to∫ τ1+L
2

τ1
y(τ)dτ < 4CT . This is because for the retrieval of a

Dirac δ1 in a stream, we only need 3 output spikes in the
interval [τ1, τ1+ L

2 ] as detailed in Section III-B (rather than 4
samples as in the case of bursts of Diracs).

V. SIMULATIONS
The sampling and reconstruction of a stream of K = 3

Diracs are depicted in Fig. 3. Here, the filter is a second-order
E-spline, of support L = 2, as seen in Fig. 3(b), the inter-
Dirac separation is larger than the kernel support L, as seen in
Fig. 3(a), and the threshold comparator’s trigger mark is CT =
0.12. The amplitudes and locations of the estimated Diracs are
exact to numerical precision. The reconstruction of 3 bursts of
2 Diracs (with inter-burst separation larger than L) from non-
uniform samples is depicted in Fig. 4. The reconstructed signal
depicted in Fig. 4(d) is exact to numerical precision. Finally,
in the plots in Fig. 3(c) and 4(c) we observe that there are no
output spikes in a region where the input signal is zero, which
leads to lower average density of samples.

Fig. 3: Sampling of a stream of Diracs. The input signal is shown in
(a), the integrator output in (b), the output non-uniform samples in
(c), and the reconstructed signal in (d).

Fig. 4: Sampling of bursts of Diracs. The input signal is shown in (a),
the first channel’s integrator output in (b), the first channel’s output
non-uniform samples in (c), and the reconstructed signal in (d).

VI. CONCLUSIONS

This paper investigated the problem of time encoding using
an integrate-and-fire mechanism, which consists of filtering the
input with an exponential reproducing kernel, and obtaining
the timing information with an integrator and a threshold
comparator. We first showed that the sampling kernel can
locally reproduce exponentials in the case of non-uniform
sampling. Moreover, we designed algorithms for recovery of
non-bandlimited signals from timing information. Simulations
verified that reconstruction of these signals is exact.
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