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Abstract—It is well-known that the Fourier series of continuous
functions on the torus are not always uniformly convergent.
However, P. L. Ulyanov proposed a problem: can we permute
the Fourier series of each individual continuous function in such
a way as to guarantee uniform convergence of the rearranged
Fourier series? This problem remains open, but nonetheless a
rather strong partial result was proved by S. G. Révész which
states that for every continuous function there exists a subse-
quence of rearranged partial Fourier sums converging to the
function uniformly.

We give several new equivalences to Ulyanov’s problem in
terms of the convergence of the rearranged Fourier series in the
strong and weak operator topologies on the space of bounded
operators on L2(T). This new approach gives rise to several new
problems related to rearrangement of Fourier series. We also
consider Ulyanov’s problem and Révész’s theorem for reduced
C∗–algebras on discrete countable groups.

I. INTRODUCTION

For a function f ∈ C(T), the formal series

S[f ](t) :=
∑
n∈Z

cne
2πint, t ∈ T (1)

is called its Fourier series where cn is the n–th Fourier
coefficient of f defined by

cn :=

∫
T
f(t)e−2πintdt.

Even though the series in (1) are convergent in L2 and
pointwise almost everywhere (due to Carleson’s theorem), they
are not necessarily convergent in the inherent topology of
C(T) arising from the uniform norm. For example, a result
of Kahane and Katznelson [7] shows that for any Lebesgue
null set, there exists a continuous function whose Fourier series
diverges on that set.

Appealing to intuition from other classical results on con-
ditionally converging series, e.g. Riemann’s rearrangement
theorem, one might naturally suspect if reordering the terms
in the Fourier series gives rise to a sequence of partial sums
with better behavior. To set some notation, given a bijection
σ : Z → Z, define the rearranged partial sum of the Fourier
series of f ∈ L1(T) by

Sσ,N [f ](t) :=
∑
|n|≤N

cσ(n)e
2πiσ(n)t, t ∈ T.

In 1964, P. L. Ulyanov proposed the following problem [14].

Problem 1 (Ulyanov). Given any f ∈ C(T), does there exists
a permutation σ : Z → Z such that the rearranged partial
sums Sσ,N [f ] converge to f uniformly as N →∞?

Surprisingly, there are some rather strong partial results
toward this problem. The next theorem is due to S. G.
Révész [12] and serves as a starting point for our investigation.

Theorem I.1 (Révész). For every f ∈ C(T), there exists a
permutation σ : Z → Z and a bijection {Nk} ⊂ N such that
Sσ,Nk

[f ] converges to f uniformly as k →∞.

A stronger result was later proved by S. Konyagin [8], [9]:

Theorem I.2 (Konyagin). If f ∈ C(T) has modulus of
continuity satisfying ω(f, δ) = o(1/ log log(1/δ)), δ → 0+,
then there exists a permutation σ : Z→ Z such that Sσ,N [f ]
converges to f uniformly as N →∞.

Note that this decay condition on the modulus of continuity
is mild. The classic Dini–Lipschitz criterion gives that if
ω(f, δ) = o(1/ log(1/δ), δ → 0+, then SN [f ] converges
uniformly to f , but Theorem I.2 shows that for much slower
decay, this is true up to rearrangement.

Another facet of the conjecture has been considered by
McNeal and Zeytuncu [10], wherein they demonstrate the
existence of a rearrangement σ which preserves pointwise
convergence of partial sums of Fourier series (i.e. if SN [f ](t)
converges, then so does Sσ,N [f ](t)). Additionally, they show
that convergence of rearranged partial sums under such a
permutation need not imply that the non-rearranged partial
sums converge.

In Section II, we provide an operator theoretic equivalence
to Ulyanov’s problem. This approach naturally leads to other
operator theoretic questions which are presented as theorems
or problems.

In Section III we consider the analogue of Fourier series
indexed by a discrete countable group and consider analoguous
problems in that setting.

This paper may be considered an announcement of the
results of [6], and thus proofs are typically omitted; however,
the interested reader may find them there for the classical
Fourier series case, while results in the non-commutative case
will be the purview of future work.



II. CLASSICAL FOURIER SERIES

Definition 1. For f ∈ C(T), we say that fN ∈ C(T)
converges to f ∈ C(T) in the strong operator topology (SOT)
if

fN · g → f · g in L2(T) for every g ∈ L2(T). (2)

And we say that the convergence is in the weak operator
topology (WOT) if∫

T
fN (t)g(t)dt→

∫
T
f(t)g(t)dt for every g ∈ L1(T). (3)

Note here that we are assigning to any continuous function
f a multiplication operator Mf : L2 → L2 via multiplication,
i.e. Mfg = fg almost everywhere. Thus Definition 1 simply
mean that MfN → Mf in SOT or WOT in the classic way,
but to make terminology and notation easy, we define SOT or
WOT convergence of continuous functions in this way.

The next theorem states that uniform convergence in
Ulyanov’s problem can be replaced with convergence in SOT
or WOT.

Theorem II.1. The following statements are equivalent:
(i) Ulyanov’s problem has a positive answer, i.e. for every

f ∈ C(T), there is a bijection σ : Z → Z so that
Sσ,N [f ]→ f uniformly,

(ii) For every f ∈ C(T), there is a bijection σ : Z → Z so
that Sσ,N [f ]→ f in the strong operator topology,

(iii) For every f ∈ C(T), there is a bijection σ : Z → Z so
that Sσ,N [f ]→ f in the weak operator topology.

Note that for any fixed f ∈ C(T), uniform convergence
implies SOT convergence implies WOT convergence, but for
arbitrary functions the converses of each of these implications
is untrue. Thus this theorem allows us to examine seemingly
weaker versions of Ulyanov’s problem; in particular, by con-
sidering the conditions (2) and (3) on proper subspaces of
L2(T) and L1(T), respectively. Along these lines, we propose
the following relaxation of Ulyanov’s problem.

Problem 2. Is it true that for every f ∈ C(T), and every
finite dimensional subspace V ⊂ L2(T) (resp. L1(T)) there
exists a bijection σ : Z → Z so that (2) (resp. (3)) holds for
all g ∈ V .

With this notion of convergence in mind, it is interesting to
consider what functions converge unconditionally in SOT and
WOT. The following is a complete characterization of such
functions.

Theorem II.2. Let W be the set of functions f ∈ C(T)
whose Fourier series converge unconditionally in SOT. Then
W = A(T), the Wiener algebra of functions with absolutely
convergent Fourier series. The statement also holds true if SOT
is replaced with WOT.

The next theorem can be regarded as the dual version of
Theorem II.2, in which we characterize the largest subspace
of L2 for which the Fourier series of all continuous functions
are unconditionally convergent in SOT.

Theorem II.3. Let V be the set of functions g ∈ L2(T) so
that ‖Sσ,N [f ]g − fg‖L2 → 0 for all f ∈ C(T), g ∈ V and
every bijection σ : Z→ Z. Then V = L∞(T).

Interestingly, the statement of this theorem turns out to be
equivalent to the following statement: there exists an absolute
constant c > 0 such that for any measurable set E ⊆ T with
|E| > 0 there exists a function f ∈ C(T) with ‖f‖∞ ≤ 1,
and there exists a sequence E = {εn} ∈ {−1, 1}Z for which

‖TE [f ]1E‖2 ≥ c

where
TE,N [f ](t) :=

∑
|n|≤N

εncne
2πint,

and TE [f ] is the L2 limit of TE,N [f ], which is guaranteed to
exist since {cn} ∈ `2. In [6], we show that c ≥ 2

3
√

3π
by a

construction involving flat polynomials on the torus; however
we conjecture that the supremum of all such c for which the
above statement holds is in fact equal to 1 (note that c ≤ 1
by basic considerations).

The following is the analogue for Theorem II.3 for WOT
convergence.

Theorem II.4. Let Ṽ be the set of functions g ∈ L1(T), so
that ∫

T
Sσ,N [f ](t)g(t)dt→

∫
T
f(t)g(t)dt

for all f ∈ C(T), g ∈ Ṽ and every bijection σ : Z→ Z. Then
Ṽ = L2(T).

III. FOURIER SERIES ON DISCRETE GROUPS

Let Γ be a discrete countable group. Denote

`2(Γ) = {(cγ)γ∈Γ : cγ ∈ C and ‖c‖`2(Γ) =
∑
γ∈Γ

|cγ |2 <∞}.

The set of all bounded linear operators from `2(Γ)→ `2(Γ)
is denoted by B(`2(Γ)). For every γ ∈ Γ, consider the shift
operator Uγ ∈ B(`2(Γ)) defined by

(Uγc)h = chγ−1 for (ch)h∈Γ ∈ `2(Γ).

These shift operators induce what is called the left regular
representation of Γ on `2(Γ).

Definition 2. We say that {AN} ⊂ B(`2(Γ)) converges to
A ∈ B(`2(Γ)) in the strong operator topology if

AN (g)→ A(g) in `2(Γ) for every g ∈ `2(Γ).

Likewise {AN} ⊂ B(`2(Γ)) converges to A ∈ B(`2(Γ)) in
the weak operator topology if

〈AN (g1), g2〉 → 〈A(g1), g2〉 for every g1, g2 ∈ `2(Γ).

Definition 3. The smallest algebra closed in the operator norm
topology and containing {Uγ}γ∈Γ is called the reduced group
C∗–algebra of Γ and is denoted by C∗r (Γ).

The smallest algebra closed in the SOT (or, equivalently in
this case, WOT) and containing {Uγ}γ∈Γ is called the von
Neumann algebra of Γ and denoted by L(Γ).



Note that C∗r (Γ) ⊂ L(Γ). For A ∈ L(Γ), derived from the
matrix representation of A in the canonical basis {δγ}γ∈Γ of
`2(Γ), we can consider the formal series∑

γ∈Γ

cγUγ (4)

where cγ = 〈A(δγ), δe〉 and e is the identity element of Γ. We
use the notation

coef(A) = (〈A(δγ), δe〉)γ∈Γ.

If Γ is Abelian, then given a sequence c = {cγ}γ∈Γ ∈
`2(Γ), c = coef(A) for some A ∈ C∗r (Γ) if and only if there
exists an f ∈ C(Γ̂) such that cγ = f̌(γ) where Γ̂ is the
Pontryagin dual of Γ and f̌ is the inverse Fourier transform
of f (see [13], Ch. III.1). In particular, when Γ = Z, Un
is the left shift operator on `2(Z) so via Fourier transform
it corresponds to the multiplication operator by e2πint and
C∗r (Z) corresponds to continuous functions on T. In this case,
L(Z) = L∞(T).

Ulyanov’s problem in the context of reduced group C∗–
algebras can be formulated as follows.

Problem 3. Given A ∈ C∗r (Γ), is it possible to index the
elements in Γ by N, Γ = {γn}∞n=0, in such a way that

N∑
n=0

cγnUγn → A

in the operator norm where c = coef(A)?

To consider a relaxation of this inspired by Révész’s Theo-
rem, given I ⊂ Γ with |I| <∞, denote

SI [A] =
∑
γ∈I

cγUγ .

Definition 4. We say that the group Γ satisfies the
Révész property if for every A ∈ C∗r (Γ) there exists a nested
exhaustion of Γ, i.e. {IN}N∈N, IN ⊂ IN+1, |IN | <∞ which
satisfy

⋃
N IN = Γ such that SIN [A] → A in the operator

norm.

By Theorem I.1, the group of integers Z has the
Révész property. The fact that Zd has the Révész property
was proved in [11]. The Révész property for discrete countable
Abelian groups follows from the next theorem.

Theorem III.1. The following permanence properties are true
for the Révész property. Always Γ will be a countable discrete
group.

1) Suppose that Γ has subgroups (Hn)n∈N so that Hn ⊆
Hn+1 and Γ =

⋃
nHn. If each Hn has the Révész prop-

erty, then so does Γ.

2) If Γ has the Révész property, then any subgroup of Γ has
the Révész property.

3) Suppose that H is a finite index subgroup of Γ. If H has
the Révész property, then so does Γ.

It is not clear whether every countable discrete non-abelian
group has the Révész property; in fact we have the following
two conjectures.

Conjecture. 1) The free group of two elements F2 does not
have the Révész property;

2) Groups of polynomial growth have the Révész property.

Since the proof of equivalences in Theorem II.1 relies on
Révész’s theorem, it is not obvious also whether the statement
of Theorem II.1 holds for general groups or not.

For the analogue of Theorem II.3, let V be the set of all
g ∈ `2(Γ) so that ‖SIN [A](g) − A(g)‖`2(Γ) → 0 for all A ∈
C∗r (Γ), g ∈ V and every exhaustion of Γ given by {IN}N∈N,
IN ⊂ IN+1, |IN | <∞ and

⋃
N IN = Γ.

The analogue of the space L∞(T) is the set

L(Γ) = {g = coef(A) : A ∈ L(Γ)}.

Theorem III.2. The following statements are equivalent.
1) V = L(Γ),
2) There is an absolute constant c > 0 so that for any

projection P ∈ L(Γ) with P (e) > 0, there is an
A ∈ C∗r (Γ) with ‖a‖op ≤ 1, and a subset I ⊆ Γ so
that ‖coef(SI [A]P )‖`2(Γ) ≥ c.

However, unlike the integer case, we don’t have a proof of
condition 2) in Theorem III.2 for arbitrary groups.

Somewhat surprisingly, Theorem II.2 does not generalize
to all non-commutative groups; however, the condition there
turns out to give yet another characterization of amenability.
Denote by W (Γ) the set of A ∈ C∗r (T) for which coef(A) ∈
`1(Γ); this is the natural analogue of Wiener algebra for
general groups. Similar to Theorem II.2, the following holds.

Theorem III.3. Let W be the set of all A ∈ C∗r (Γ) whose
Fourier series converge unconditionally in SOT. Then W =
W (Γ) if and only if Γ is an amenable group.

There are rather a lot of equivalent definitions of amenable
groups, see e.g. [3, Section 2.6]. Perhaps the most tangible
definition for our circumstances is that via Følner sequences.

Definition 5. Let Γ be a countable, discrete group. A sequence
(Fn)∞n=1 of finite, nonempty subsets of Γ is said to be a Følner
sequence if

lim
n→∞

|γFn∆Fn|
|Fn|

= 0, for all γ ∈ Γ.

We say that Γ is amenable if it has a Følner sequence.

Example of amenable groups include finite groups, abelian
groups, solveable groups, niltpotent groups. See [2, Section
G.2]. The class of amenable groups also possesses the follow-
ing permanence properties (see [2, Appendix G]):
• if Γ is amenable and Λ is a subgroup of Γ, then Λ is

amenable;
• if Γ is a group which has a finite-index amenable sub-

group, then Γ is amenable;
• if Γ is amenable, then so is any quotient of Γ;



• if Λ is a normal subgroup of a group Γ, and if Λ,Γ/Λ
are amenable, then Γ is amenable;

• if (Γn)n are an increasing sequence of amenable sub-
groups of Γ, and if Γ =

⋃
n Γn, then Γ is amenable.

The class of amenable groups also include all groups of
intermediate growth, such as the Grigorchuk group [5].

Some examples of groups which are not amenable include
all nonabelian free groups, lattices in SLn(R), SO(n, 1),
certain free Burnside groups, any free product Γ ∗Λ provided
(|Γ| − 1)(|Λ| − 1) ≥ 2, and any non-elementary hyperbolic
group. See [2, Appendix G],[1], [4].
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trigonométriques. Studia Mathematica, 3(26):307–313, 1966.

[8] S. V. Konyagin. Rearrangements of trigonometric series and trigono-
metric polynomials. Real Anal. Exchange, 29(1):323–334, 2003.

[9] S. V. Konyagin. On uniformly convergent rearrangements of trigono-
metric Fourier series. Journal of Mathematical Sciences, 155(1):81–88,
Nov 2008.

[10] J. D. McNeal and Y. E. Zeytuncu. A note on rearrangement of fourier
series. Journal of mathematical analysis and applications, 323(2):1348–
1353, 2006.
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[12] S. G. Révész. Rearrangements of Fourier series. Journal of Approxi-
mation Theory, 60(1):101 – 121, 1990.

[13] M. Takesaki. Theory of operator algebras II, volume 125. Springer
Science & Business Media, 2013.

[14] P. L. Ulyanov. Solved and unsolved problems in the theory of
trigonometric and orthogonal series. Russian Mathematical Surveys,
19(1):1–62, 1964.


