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Abstract—We discuss the expressive power of neural net-
works which use the non-smooth ReLU activation function
%(x) = max{0, x} by analyzing the approximation theoretic
properties of such networks. The existing results mainly fall into
two categories: approximation using ReLU networks with a fixed
depth, or using ReLU networks whose depth increases with the
approximation accuracy. After reviewing these findings, we show
that the results concerning networks with fixed depth—which up
to now only consider approximation in Lp(λ) for the Lebesgue
measure λ—can be generalized to approximation in Lp(µ), for
any finite Borel measure µ. In particular, the generalized results
apply in the usual setting of statistical learning theory, where
one is interested in approximation in L2(P), with the probability
measure P describing the distribution of the data.

I. INTRODUCTION

In recent years, machine learning techniques based on
deep neural networks have significantly advanced the state
of the art in applications like image classification, speech
recognition, and machine translation. The networks used for
such applications tend to use the non-smooth ReLU activation
function %(x) = max{0, x}, since it is empirically observed
to improve the training procedure [4].

In this paper, we focus on the expressive power of such
neural networks. Precisely, given a function class F and an
approximation accuracy ε > 0, we aim to find a complexity
bound N = N(F , ε) such that for any f ∈ F , one can
find a ReLU network Φfε of complexity at most N satisfying
‖f − Φfε‖ ≤ ε. Here, the complexity of the network is mea-
sured in terms of its depth (the number of layers) and in terms
of the number of neurons and weights. The approximation
error will be either measured in the uniform norm or in
Lp(µ) for some measure µ. When we simply write Lp, it is
understood that µ = λ is taken to be the Lebesgue measure.

Structure of the paper: We start by reviewing existing
results which provide complexity bounds N(F , ε) for ap-
proximating functions from the class F = Fd,β,B of all
Cβ functions f on Q := Qd := [− 1

2 ,
1
2 ]d that satisfy

‖f‖Cβ ≤ B. These results fall into two categories: The
first considers approximation in Lp using ReLU networks of
fixed depth, while the second considers uniform approximation
using networks of increasing depth. We also present a novel
result, showing that the complexity bounds of the first category
also apply for approximation in Lp(µ); see Theorem II.3.

Note that if N(F , ε) is a valid complexity bound, then so
is any N ′(F , ε) ≥ N(F , ε). Therefore, after reviewing the
existing complexity bounds, we also discuss their optimality.

In the final section of the paper, we prove Theorem II.3.

II. APPROXIMATION RESULTS USING RELU NETWORKS

In this section, we review the existing findings concerning
the approximation properties of ReLU networks. In doing so,
we first focus on approximation using ReLU networks with a
fixed depth, and then see what changes when the depth of the
networks is allowed to grow with the approximation accuracy.

First of all, however, we formally define neural networks
and discuss how to measure their complexity. Here and in the
remainder of the paper, we write m := {1, . . . ,m}.

Definition II.1. A neural network Φ with L = L(Φ) ∈ N
layers, input dimension d ∈ N and output dimension k ∈ N is
a tuple Φ =

(
(A1, b1), . . . , (AL, bL)

)
, where A` ∈ RN`×N`−1

and b` ∈ RN` for ` ∈ L and where N0 = d and NL = k.
Given % : R → R (called the activation function), the %-

realization of Φ is the function R%(Φ) : Rd → Rk, x 7→ xL,
where x0 := x ∈ Rd and xL := AL xL−1 + bL ∈ Rk, while

x` := %(A` x`−1 + b`) ∈ RN` for ` ∈ L− 1,

where %(y) =
(
%(y1), . . . , %(yn)

)
for y = (y1, . . . , yn) ∈ Rn.

The number of neurons of Φ is N(Φ) :=
∑L
`=0N` ∈ N,

while the number of (nonzero) weights of Φ is given by
W (Φ) :=

∑L
i=1

(
‖Ai‖`0 + ‖bi‖`0

)
, with ‖A‖`0 denoting the

number of nonzero entries of a matrix or vector A.
Given Ω ⊂ R, we say that all weights of Φ belong to Ω if all

entries of the matrices A1, . . . , AL and the vectors b1, . . . , bL
belong to Ω. Given s ∈ N and ε ∈ (0, 1

2 ), we say that the
network Φ is (s, ε)-quantized, if all weights of Φ belong to
the set [−ε−s, ε−s] ∩ 2−sdlog2(1/ε)eZ.

Weight-quantization is a further notion of complexity,
which—when combined with bounds on the number of net-
work weights—restricts the number of bits needed to encode
the network.

In the remainder of the paper, we will only consider the
ReLU activation function % : R→ R, x 7→ max{0, x}.

A. Lp approximation using fixed-depth networks

The following is the main existing result concerning approx-
imation of Cβ functions using fixed-depth ReLU networks.



Theorem II.2. ([5, Theorem A.9]) Let β,B, p ∈ (0,∞),
d ∈ N, and Q := [− 1

2 ,
1
2 ]d. There are C > 0 and s ∈ N (de-

pending on d, β,B, p) such that for ε ∈ (0, 1
2 ) and f ∈ Cβ(Q)

with ‖f‖Cβ ≤ B, there is an (s, ε)-quantized network Φfε
with L(Φfε ) ≤ 11 + (1 + dlog2 βe)(11 + β

d ), and with
‖f − R%(Φ

f
ε )‖Lp ≤ Cε and N(Φfε ) .W (Φfε ) ≤ C ε−d/β .

In Section IV, we will prove the following generalization:

Theorem II.3. Let d ∈ N and β,B, p ∈ (0,∞), and let µ be a
finite Borel measure on Q := [− 1

2 ,
1
2 ]d. There are C > 0 and

s ∈ N (depending on d, p, β,B, µ) such that for ε ∈ (0, 1
2 )

and f ∈ Cβ(Q) with ‖f‖Cβ ≤ B, there is an (s, ε)-quantized
network Φfε with L(Φfε ) ≤ 7 + (1 + dlog2 βe)(11 + β

d ), and

‖f−R%(Φ
f
ε )‖Lp(µ) ≤ Cε and N(Φfε ) .W (Φfε ) ≤ C ε−d/β .

The optimality of the complexity bound W (Φfε ) . ε−d/β

will be discussed in detail in Section III. A related question
concerns the optimality of the depth of the networks. The next
result shows that—up to logarithmic factors—the depth of the
networks in Theorems II.2 and II.3 is indeed optimal.

Theorem II.4. ([5, Theorem C.6]; see [7] for the case p = 2)
Let ∅ 6= Ω ⊂ Rd be open, bounded, and connected. Let

f ∈ C3(Ω) be nonlinear and p ∈ (0,∞). There is Cf,p,d > 0
such that for any neural network Φ of depth L(Φ), we have

‖f − R%(Φ)‖Lp ≥ Cf,p,d ·
(
1 + min{N(Φ),W (Φ)}

)−2L(Φ)
.

Thus, to attain ‖f − R%(Φ
f
ε )‖Lp . ε subject to the

complexity bound W (Φfε ) . ε−d/β , the networks Φfε must
satisfy L(Φfε ) ≥ β/2d, at least for ε > 0 small enough.

In a nutshell, these results show that ReLU networks achieve
better approximation rates for smoother functions. To attain
these better rates, however, one has to use deeper networks.

Further results: One can also derive Lp approximation
rates for a certain class of discontinuous functions; see [5].
Further, the presented results for fully connected networks are
equivalent to approximation results for certain simplified con-
volutional networks [6] that do not employ pooling operations.

We close our tour of approximation results using fixed depth
networks with the following result.

Proposition II.5. (see [9, Proposition 1]) Let d ∈ N and
β ∈ (0, 1], and Q := [− 1

2 ,
1
2 ]d. There is C = C(d, β) > 0

such that for each f ∈ Cβ(Q) and ε ∈ (0, 1
2 ), there is a

neural network Φfε with L = L(d) layers such that
‖f − R%(Φ

f
ε )‖sup ≤ ε ‖f‖Cβ and N(Φfε ).W (Φfε )≤ C

εd/β
.

Though not explicitly stated in [9], one can show that the
same statement holds for certain (s, ε)-quantized networks Φfε ,
where s = s(d,B) and ‖f‖Cβ ≤ B.

Such a uniform approximation is much stronger than ap-
proximation in Lp(µ). It should be noted, however, that the
above result only applies for the “low smoothness, slow
approximation regime” β ∈ (0, 1] where a piecewise affine
approximation yields an optimal error. For β > 1 it is an open
problem whether the bounds in Theorems II.2 and II.3 also
hold for uniform approximation using fixed-depth networks.

B. Uniform approximation using networks of growing depth

While it is open whether fixed-depth networks can satisfy
‖f − R%(Φ

f
ε )‖sup . ε and W (Φfε ) . ε−d/β for f ∈ Cβ and

β > 1, this is possible with a mild depth-growth as ε→ 0.

Theorem II.6. (see [8, Theorem 1]) Let d, k ∈ N and set
Q := [− 1

2 ,
1
2 ]d. There is C = C(d, k) > 0 such that for any

ε ∈ (0, 1
2 ) and f ∈ Ck(Q) with ‖f‖Ck ≤ 1, there is a network

Φfε satisfying N(Φfε ) .W (Φfε ) ≤ C
(
1 + ln(1/ε)

)
ε−d/k and

‖f − R%(Φ
f
ε )‖sup ≤ ε, as well as L(Φfε ) ≤ C

(
1 + ln(1/ε)

)
.

Although not stated explicitly in [8, Theorem 1], the proof
shows that Φfε can be chosen to be (s, ε)-quantized for some
s = s(d, k) ∈ N.

We close this section with a surprising result from [9]. In
that paper, Yarotsky shows that if one does not restrict the
growth of the depth as ε→ 0, and if one does not insist that
the networks be quantized, then one can significantly beat the
approximation rates stated in Theorems II.6, II.2, and II.3—at
least in the “low smoothness” regime β ∈ (0, 1]:

Theorem II.7. (see [9, Theorem 2])
Let d ∈ N, β ∈ (0, 1], and Q := [− 1

2 ,
1
2 ]d. There is

C = C(d, β) > 0 such that for any ε ∈ (0, 1
2 ) and

f ∈ Cβ(Q) with ‖f‖Cβ ≤ 1 there is a network Φfε satisfying
‖f − R%(Φ

f
ε )‖sup ≤ ε and W (Φfε ) ≤ C ε−d/(2β).

Note that Theorem II.6 only yields W (Φfε ) . ε−d/β instead
of W (Φfε ) . ε−d/(2β). Also note that Theorem II.7 does not
claim that the networks can be chosen to be quantized. In fact,
this is impossible, as shown in the next section.

III. OPTIMALITY OF THE APPROXIMATION RESULTS

Assuming that the complexity of the individual weights of
the network does not grow too quickly as ε ↓ 0, the complexity
bound W (Φfε ) . ε−d/β derived in Theorems II.2 and II.6 is
optimal up to a log-factor. In fact, the same arguments as in
the proof of [5, Theorem 4.3] show the following:

Proposition III.1. Let d, s ∈ N and β,B, p ∈ (0,∞) and
let Q := [− 1

2 ,
1
2 ]d. Then there is a function f ∈ Cβ(Q) with

‖f‖Cβ ≤ B and a null-sequence (εk)k∈N such that

inf

{
W (Φ) :

Φ an (s, εk)-quantized neural netw.
and ‖f − R%(Φ)‖Lp ≤ εk

}
≥ ε−d/βk

/(
log(1/εk) · log(log(1/εk))

)
∀ k ∈ N .

In particular, while Theorem II.3 is not optimal for every
measure µ, it is optimal for the Lebesgue measure µ = λ.

Proposition III.1 also shows that the networks in Theo-
rem II.7 can not be chosen to be (s, ε)-quantized.

The proof of Proposition III.1 is information-theoretic: On
the one hand, [5, Lemma B.4] shows that there are at most
2O(ε−θ log2(1/ε)) many different realizations of (s, ε)-quantized
ReLU networks that have c ε−θ nonzero weights. On the other
hand, [3] yields lower bounds for the cardinality of families
that are ε-dense (with respect to the Lp norm) in the set of all
Cβ-functions f such that ‖f‖Cβ ≤ B.



Finally, using bounds for the VC-dimension of neural net-
works (see [1]), Yarotsky showed that the approximation rates
derived in Theorem II.7 are optimal; see [9, Theorem 1].

In summary, we note the following:
• For quantized networks, the rates in Theorems II.2 and

II.6 are optimal.
• For fixed-depth networks, the rates for uniform approxi-

mation in Theorem II.6 cannot be improved, even without
assuming quantized networks; see [8, Part 2 of Theorem
4]. Note, however, that it is open whether these rates can
be attained at all using fixed-depth networks if β > 1.

• Since the VC dimension arguments used for proving
[8, Theorem 4] do not seem to generalize to Lp-
approximation, it is open whether the rates in Theo-
rem II.2 are optimal for bounded-depth networks without
assuming quantized networks.

• If one neither assumes bounded depth nor quantized
networks, then the results in Theorems II.2 and II.5 can
be improved, at least for β ∈ (0, 2). The optimal rates for
this setting and for β ∈ (0, 1] are given by Theorem II.7.
It is open what the optimal rates for β > 1 are if one
neither assumes bounded depth nor quantized networks.

IV. PROOF OF THEOREM II.3

We begin with the following lemma which shows that ReLU
networks can (approximately) localize a function to a cube.

Lemma IV.1. (modification of [5, Lemma A.6])
For a, b ∈ Rd and 0 < ε < mini∈d

1
2 (bi − ai), set

[a, b) :=
∏d
i=1[ai, bi) and [a, b]ε :=

∏d
i=1[ai + ε, bi − ε].

If B ≥ 1, there is a 4-layer network Λ
(a,b)
ε,B with 1-dimensional

output and (d+ 1)-dimensional input, with W (Λ
(a,b)
ε,B ) ≤ c(d)

weights, all of which have their absolute values bounded by
d+B + ε−1 · (1 + ‖a‖`∞ + ‖b‖`∞), and such that if x ∈ Rd
and y ∈ [−B,B], then∣∣R%

(
Λ

(a,b)
ε,B

)
(x, y)−y 1[a,b)(x)

∣∣ ≤ 2B 1[a,b)\[a,b]ε(x). (IV.1)

Proof. For i ∈ d, define a function ti : R → R by setting
ti(x) = %(x−aiε )− %(x−ai−εε )− %(x−bi+εε ) + %(x−biε ). Note
that ti is the realization of a two-layer ReLU network with
at most 12 nonzero weights, all of which satisfy the required
bound on the absolute value. It is easy to see that 0 ≤ ti ≤ 1
and ti ≡ 1 on [ai + ε, bi − ε], while ti ≡ 0 on R \ (ai, bi).

Now, define T : Rd × R→ R by

T (x, y) :=

1∑
`=0

(−1)`B %
(
%
(
(−1)` yB

)
− d+

∑d
i=1ti(xi)

)
.

By construction, T = R%(Λ
(a,b)
ε,B ) for a ReLU network Λ

(a,b)
ε,B

as in the statement of the lemma. Furthermore, if y ∈ [−B,B],
then %

(
(−1)` yB

)
− d +

∑d
i=1ti(xi) ≤ 1, which shows

|T (x, y)| ≤ B. Next, if y ∈ [−B,B] and x ∈ [a, b]ε, then
ti(xi) = 1 for all i ∈ d, and hence T (x, y) = y. Finally, if
y ∈ [−B,B] and x ∈ Rd \ [a, b), then ti(xi) = 0 for some
i ∈ d, which entails T (x, y) = 0. This proves Eq. (IV.1).

In [5], it was used that Estimate (IV.1) shows that
R%(Λ

(a,b)
ε,B )(•, f(•)) and 1[a,b] · f are close in Lp. Our next

result shows that if one properly chooses the endpoints a, b,
one even gets closeness (including an approximation rate) in
Lp(µ). In addition to several results from [5], this observation
is the main ingredient for our proof of Theorem II.3.

Proposition IV.2. Let d ∈ N, γ > 0, p ∈ [1,∞), and define
k := d+ 1 + pγ. For N ∈ N, let ΩN := Zd ∩ [0, 2 · 2N − 1]d.
For a ∈ Rd and ω ∈ ΩN , let aω,−N := a+ ω

2N
∈ Rd and

aω,+N := a+ ω+(1,...,1)
2N

∈ Rd, as well as Ia,ωN := [aω,−N , aω,+N ).
Let µ be a finite Borel measure on Q := [− 1

2 ,
1
2 ]d. For

Lebesgue-almost every a ∈ [−5, 5]d, there is a constant
Ca = Ca(a, p, µ, γ) > 0 such that if B ≥ 1 and if for each
ω ∈ ΩN a measurable function fω : Q → [−B,B] is given,
then for every N ∈ N, with Λ

(a,b)
ε,B as in Lemma IV.1, we have∥∥∥∥ ∑

ω∈ΩN

[
R%(Λ

(aω,−N ,aω,+N )

2−kN ,B
)(•, fω(•))−1Ia,ωN ·fω

]∥∥∥∥
Lp(µ)

≤ CaB

2Nγ
.

Proof. We consider µ as a Borel measure on Rd, by setting
µ(A) := µ(A∩Q). If x ∈ [aω,−N , aω,+N )\[aω,−N , aω,+N ]2−kN , then
xi /∈ [(aω,−N )i+2−kN , (aω,+N )i−2−kN ] for some i ∈ d; hence,
xi ∈ [(aω,−N )i, (a

ω,−
N )i + 2−kN ] ∪ [(aω,+N )i − 2−kN , (aω,+N )i].

By definition of aω,±N , this implies ai ∈ J (i)
N (x, ω), where

J
(i)
N (x, ω) :=[(θx,ωN )i− 1

2kN
, (θx,ωN )i]∪[(ηx,ωN )i, (η

x,ω
N )i+

1
2kN

],

with θx,ωN := x−2−Nω and ηx,ωN := x−2−N (ω+(1, . . . , 1)).
Let R := [−5, 5]d. Using µ(A) =

∫
Rd 1A(x) dµ(x), we see

~ :=

∫
R

∞∑
N=1

2Npγ
∑
ω∈ΩN

µ
(
[aω,−N , aω,+N )\[aω,−N , aω,+N ]2−kN

)
da

≤
∞∑
N=1

∑
ω∈ΩN

d∑
i=1

2Nγp
∫
R

∫
Rd
1
J

(i)
N (x,ω)

(ai) dµ(x) da

:=⊕(i)
N (ω)

.

Using the Lebesgue measure λ, Fubini’s theorem shows

⊕(i)
N (ω) =

∫
Rd
λ
({
a ∈ [−5, 5]d : ai ∈ J (i)

N (x, ω)
})

dµ(x),

from which we get ⊕(i)
N (ω) ≤ 2 · 10d−1µ(Rd) · 2−Nk. Thus,

~ .
∑∞
N=1 |ΩN | · 2Nγp · 2−Nk .

∑∞
N=1 2N(d+γp−k) <∞,

since k = 1 + d+ γp.
Recalling the definition of ~, we see that∑∞
N=1

[
2Npγ

∑
ω∈ΩN

µ
(
[aω,−N , aω,+N )\[aω,−N , aω,+N ]2−kN

)]
<∞

for Lebesgue-almost every a ∈ [−5, 5]d. In particular, for
Lebesgue-almost every a ∈ [−5, 5]d, there is a constant
Ca = Ca(a, p, γ, µ) > 0 such that for every N ∈ N, we have∑
ω∈ΩN

µ
(
[aω,−N , aω,+N ) \ [aω,−N , aω,+N ]2−kN

)
≤ Ca · 2−Npγ .

Let us fix such a point a ∈ [−5, 5]d, and for each ω ∈ ΩN ,
let fω : Q→ [−B,B] be measurable. Estimate (IV.1) shows∑

ω∈ΩN

∣∣R%

(
Λ

(aω,−N ,aω,+N )

2−kN ,B

)
(•, fω(•))− 1[aω,−N ,aω,+N ) · fω

∣∣
≤ 2B

∑
ω∈ΩN

1[aω,−N ,aω,+N )\[aω,−N ,aω,+N ]
2−kN

= 2B · 1P



for P :=
⊎
ω∈ΩN

[aω,−N , aω,+N ) \ [aω,−N , aω,+N ]2−kN , where the
union is disjoint. Hence,∥∥∥∥ ∑
ω∈ΩN

[
R%(Λ

(aω,−N ,aω,+N )

2−kN ,B
)(•, fω(•))− 1[aω,−N ,aω,+N ) · fω

]∥∥∥∥
Lp(µ)

≤ 2B ·
( ∑
ω∈ΩN

µ
(
[aω,−N , aω,+N ) \ [aω,−N , aω,+N ]2−kN

))1/p

≤ 2B · C1/p
a · 2−Nγ ∀N ∈ N.

To complete the proof of Theorem II.3, we need two results
from [5]. The first result is concerned with an approximate
implementation of a family of polynomials.

Lemma IV.3. (see [5, Lemma A.5]) Let d,m ∈ N and
B, β > 0. Set Q := [− 1

2 ,
1
2 ]d, let (x`)`∈m ⊂ Q, and

(c`,α)`∈m,α∈Nd0 ,|α|<β ⊂ [−B,B].
Then there are c = c(d, β,B) > 0, s = s(d, β,B) ∈ N,

and L = L(d, β) ∈ N with L ≤ 1 + (1 + dlog2 βe)(11 + β
d )

such that for all ε ∈ (0, 1
2 ), there is a neural network Φε with

d-dimensional input, m-dimensional output, with L(Φε) ≤ L
and W (Φε) ≤ c · (m + ε−d/β), such that all weights of Φε
belong to [−ε−s, ε−s], and such that∣∣∣[R%(Φε)(x)]`−

∑
|α|<β

c`,α (x−x`)α
∣∣∣ < ε ∀ ` ∈ m and x ∈ Q.

Our final ingredient is a consequence of Taylor’s theorem.

Lemma IV.4. (see [5, Lemma A.8]) Let n ∈ N0, σ ∈ (0, 1],
and β = n + σ. Let d ∈ N and Q := [− 1

2 ,
1
2 ]d. There is a

constant C = C(β, d) > 0 such that for each f ∈ Cβ(Q) with
‖f‖Cβ ≤ B and each x0 ∈ (− 1

2 ,
1
2 )d, there is a polynomial

p(x) =
∑
|α|≤n cα (x−x0)α with cα ∈ [−CB,CB] and such

that |f(x)− p(x)| ≤ CB · |x− x0|β for all x ∈ Q.

Proof of Theorem II.3. Let us fix some a ∈
(
(− 3

2 ,−
1
2 ] \Q

)d
and a constant C1 = C1(a, p, µ, β) > 0 satisfying the
conclusion of Proposition IV.2 for the choice γ := β. Such an
a exists, since

(
(− 3

2 ,−
1
2 ]\Q

)d
has positive Lebesgue measure.

Let N := dlog2 ε
−1/βe ∈ N, whence 1

ε1/β
≤ 2N ≤ 2

ε1/β
.

We observe that Q ⊂ a+ [0, 2)d ⊂
⊎
ω∈ΩN

[aω,−N , aω,+N ),

since we have Q − a ⊂ [0, 2)d. Next, define Q◦ = (− 1
2 ,

1
2 )d

and Ω∗N := {ω ∈ ΩN : Q ∩ [aω,−N , aω,+N ) 6= ∅}. Since
a ∈ (R \Q)d, we see for each ω ∈ Ω∗N that there is
some xω ∈ Q◦ ∩ [aω,−N , aω,+N ). Set m := |Ω∗N | and
write Ω∗N = {ω1, . . . , ωm} for suitable ω1, . . . , ωm. Note
m ≤ |ΩN | = (2 · 2N )d ≤ 4d ε−d/β . For i ∈ m, set xi := xωi .

Let f ∈ Cβ(Q) with ‖f‖Cβ ≤ B. Lemma IV.4 yields for
each ` ∈ m a sequence (c`,α)α∈Nd0 ,|α|<β ⊂ [−C2B,C2B]

such that |f(x)−p`(x)| ≤ C2B ·|x−x`|β for all x ∈ Q, where
p`(x) :=

∑
|α|<β c`,α (x− x`)α. Here, C2 = C2(d, β) > 0.

Next, we apply Lemma IV.3 (with C2B instead of B) to
obtain a neural network Φ with d-dimensional input and m-
dimensional output such that

∣∣[R%(Φ)(x)
]
`
−p`(x)

∣∣ ≤ ε
4 < 1

for all x ∈ Q and L(Φ) ≤ 1 + (1 + dlog2 βe)(11 + β/d), as
well as W (Φ) ≤ C3 ·

(
m + (ε/4)−d/β

)
≤ C4 · ε−d/β . Here,

Ci = Ci(d, β,B) for i ∈ {3, 4}. Finally, all weights of Φ
belong to [−ε−s1 , ε−s1 ] for some s1 = s1(d, β,B) ∈ N.

Next, we use |p`(x)| ≤ |p`(x)− f(x)|+ |f(x)| to derive

|p`(x)| ≤ C2B |x− x`|β +B ≤ B(1 + dβC2),

whence |fω` | ≤ ε
4 + B(1 + dβC2) ≤ B′ = B′(d, β,B) ≥ 1

for fω` :=
(

R%(Φ)
)
`
|Q. Let us set fω ≡ 0 for ω ∈ ΩN \ Ω∗N .

Now, set g :=
∑
ω∈Ω∗N

1[aω,−N ,aω,+N ) fω and k := d+ 1 + pβ

and furthermore G :=
∑
ω∈ΩN

R%(Λ
(aω,−N ,aω,+N )

2−kN ,B′
)(•, fω(•)).

Then Proposition IV.2 (with B′ instead of B) shows
‖G− g‖Lp(µ) ≤ C1B

2Nγ
≤ C5 ε, where C5 = C5(p, µ, β, d,B).

For x ∈ Q, we have x ∈ [aω`,−N , aω`,+N ) for a unique ` ∈ m,
whence |x−x`| ≤ d·‖x−x`‖`∞ ≤ d 2−N ≤ d ε1/β . Therefore,
g(x) = fω`(x) =

[
R%(Φ)(x)

]
`
, and hence

|f(x)− g(x)| ≤ |f(x)− p`(x)|+ |p`(x)− [R%(Φ)(x)]`|
≤ C2B · |x− x`|β + ε

4 ≤ C6 · ε,
where C6 = C6(d, β,B). Since µ is finite, we thus see
‖f −G‖Lp(µ) ≤ C7 ε for C7 = C7(p, µ, d, β,B).

It remains to show ‖G− R%(Φ
f
ε )‖Lp(µ) ≤ ε for a network

Φfε as in the statement of Theorem II.3. First, since the class
of neural networks is closed under composition and addition
(including control over the complexity of the resulting
networks; see the end of the proof of [5, Lemma A.7] for
details), we see that G = R%(Ψ

f
ε ) for a network Ψf

ε with
W (Ψf

ε ) ≤ C8ε
−d/β and L(Ψf

ε ) ≤ 7+(1+dlog2 βe)(11+ β
d ),

where C8 = C8(p, d, β,B), and such that all weights of Ψf
ε

lie in [−ε−s2 , ε−s2 ] for some s2 = s2(p, d, β,B, µ) ∈ N.
Here, we used that |ΩN | . 2dN . ε−d/β and that all weights
of the networks Λ

(aω,−N ,aω,+N )

2−kN ,B′
have absolute value at most

d+B′ + 2kN (1 + ‖aω,−N ‖`∞ + ‖aω,+N ‖`∞) ≤ d+B′ + 15·2k
εk/β

,
while all weights of Φ have absolute value at most ε−s1 .
Finally, [2, Lemma 3.7] can be used to obtain a quantized
network. Precisely, that lemma yields a network Φfε
with the properties stated in Theorem II.3 and such that
‖R%(Φ

f
ε )− R%(Ψ

f
ε )‖sup ≤ ε.
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